HIGHER MOMENT FORMULAE AND LIMITING DISTRIBUTIONS OF LATTICE POINTS

IF 1.1 2区 数学 Q1 MATHEMATICS
Mahbub Alam, Anish Ghosh, Jiyoung Han
{"title":"HIGHER MOMENT FORMULAE AND LIMITING DISTRIBUTIONS OF LATTICE POINTS","authors":"Mahbub Alam, Anish Ghosh, Jiyoung Han","doi":"10.1017/s147474802300035x","DOIUrl":null,"url":null,"abstract":"We establish higher moment formulae for Siegel transforms on the space of affine unimodular lattices as well as on certain congruence quotients of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S147474802300035X_inline1.png\" /> <jats:tex-math> $\\mathrm {SL}_d({\\mathbb {R}})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. As applications, we prove functional central limit theorems for lattice point counting for affine and congruence lattices using the method of moments.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"23 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s147474802300035x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We establish higher moment formulae for Siegel transforms on the space of affine unimodular lattices as well as on certain congruence quotients of $\mathrm {SL}_d({\mathbb {R}})$ . As applications, we prove functional central limit theorems for lattice point counting for affine and congruence lattices using the method of moments.
格点的高矩公式和极限分布
我们建立了仿射单模格空间上的Siegel变换的高矩公式,以及$\ mathm {SL}_d({\mathbb {R}})$的同余商上的高矩公式。作为应用,我们用矩量法证明了仿射和同余格点计数的泛函中心极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信