{"title":"Liquid crystalline behavior of concentrated aqueous solutions of biosurfactants","authors":"Patrick Davidson","doi":"10.1016/j.cocis.2023.101777","DOIUrl":null,"url":null,"abstract":"<div><p><span>In the current global context of the search for renewable resources, bioamphiphiles appear as a promising alternative to conventional oil-based surfactants. However, to commercialize these compounds, all their structural and physical properties should be known. Although their self-assembly and </span>interfacial properties at low concentrations are currently an active research topic, their self-organization into liquid crystalline (LC) phases at high concentrations has yet hardly been addressed. This article reviews the few studies devoted to the identification of LC properties of bioamphiphiles. It highlights the fact that only two bioamphiphile families (mannosylerythritol lipids, sophorolipids) have been investigated in some detail and that much more structural and thermodynamic knowledge is still needed to reach the level of understanding achieved with conventional surfactants.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"69 ","pages":"Article 101777"},"PeriodicalIF":7.9000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029423001024","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the current global context of the search for renewable resources, bioamphiphiles appear as a promising alternative to conventional oil-based surfactants. However, to commercialize these compounds, all their structural and physical properties should be known. Although their self-assembly and interfacial properties at low concentrations are currently an active research topic, their self-organization into liquid crystalline (LC) phases at high concentrations has yet hardly been addressed. This article reviews the few studies devoted to the identification of LC properties of bioamphiphiles. It highlights the fact that only two bioamphiphile families (mannosylerythritol lipids, sophorolipids) have been investigated in some detail and that much more structural and thermodynamic knowledge is still needed to reach the level of understanding achieved with conventional surfactants.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.