Fossils and plant evolution: structural fingerprints and modularity in the evo-devo paradigm

IF 4.1 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Evodevo Pub Date : 2022-03-02 DOI:10.1186/s13227-022-00192-7
Tomescu, Alexandru M. F., Rothwell, Gar W.
{"title":"Fossils and plant evolution: structural fingerprints and modularity in the evo-devo paradigm","authors":"Tomescu, Alexandru M. F., Rothwell, Gar W.","doi":"10.1186/s13227-022-00192-7","DOIUrl":null,"url":null,"abstract":"Fossils constitute the principal repository of data that allow for independent tests of hypotheses of biological evolution derived from observations of the extant biota. Traditionally, transformational series of structure, consisting of sequences of fossils of the same lineage through time, have been employed to reconstruct and interpret morphological evolution. More recently, a move toward an updated paradigm was fueled by the deliberate integration of developmental thinking in the inclusion of fossils in reconstruction of morphological evolution. The vehicle for this is provided by structural fingerprints—recognizable morphological and anatomical structures generated by (and reflective of) the deployment of specific genes and regulatory pathways during development. Furthermore, because the regulation of plant development is both modular and hierarchical in nature, combining structural fingerprints recognized in the fossil record with our understanding of the developmental regulation of those structures produces a powerful tool for understanding plant evolution. This is particularly true when the systematic distribution of specific developmental regulatory mechanisms and modules is viewed within an evolutionary (paleo-evo-devo) framework. Here, we discuss several advances in understanding the processes and patterns of evolution, achieved by tracking structural fingerprints with their underlying regulatory modules across lineages, living and fossil: the role of polar auxin regulation in the cellular patterning of secondary xylem and the parallel evolution of arborescence in lycophytes and seed plants; the morphology and life history of early polysporangiophytes and tracheophytes; the role of modularity in the parallel evolution of leaves in euphyllophytes; leaf meristematic activity and the parallel evolution of venation patterns among euphyllophytes; mosaic deployment of regulatory modules and the diverse modes of secondary growth of euphyllophytes; modularity and hierarchy in developmental regulation and the evolution of equisetalean reproductive morphology. More generally, inclusion of plant fossils in the evo-devo paradigm has informed discussions on the evolution of growth patterns and growth responses, sporophyte body plans and their homology, sequences of character evolution, and the evolution of reproductive systems.","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"27 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evodevo","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13227-022-00192-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

Fossils constitute the principal repository of data that allow for independent tests of hypotheses of biological evolution derived from observations of the extant biota. Traditionally, transformational series of structure, consisting of sequences of fossils of the same lineage through time, have been employed to reconstruct and interpret morphological evolution. More recently, a move toward an updated paradigm was fueled by the deliberate integration of developmental thinking in the inclusion of fossils in reconstruction of morphological evolution. The vehicle for this is provided by structural fingerprints—recognizable morphological and anatomical structures generated by (and reflective of) the deployment of specific genes and regulatory pathways during development. Furthermore, because the regulation of plant development is both modular and hierarchical in nature, combining structural fingerprints recognized in the fossil record with our understanding of the developmental regulation of those structures produces a powerful tool for understanding plant evolution. This is particularly true when the systematic distribution of specific developmental regulatory mechanisms and modules is viewed within an evolutionary (paleo-evo-devo) framework. Here, we discuss several advances in understanding the processes and patterns of evolution, achieved by tracking structural fingerprints with their underlying regulatory modules across lineages, living and fossil: the role of polar auxin regulation in the cellular patterning of secondary xylem and the parallel evolution of arborescence in lycophytes and seed plants; the morphology and life history of early polysporangiophytes and tracheophytes; the role of modularity in the parallel evolution of leaves in euphyllophytes; leaf meristematic activity and the parallel evolution of venation patterns among euphyllophytes; mosaic deployment of regulatory modules and the diverse modes of secondary growth of euphyllophytes; modularity and hierarchy in developmental regulation and the evolution of equisetalean reproductive morphology. More generally, inclusion of plant fossils in the evo-devo paradigm has informed discussions on the evolution of growth patterns and growth responses, sporophyte body plans and their homology, sequences of character evolution, and the evolution of reproductive systems.
化石和植物进化:进化-发展范式中的结构指纹和模块化
化石构成了主要的数据储存库,使我们能够独立检验从对现存生物群的观察中得出的生物进化假说。传统上,由同一谱系的化石序列组成的转换序列结构被用来重建和解释形态进化。最近,在形态进化重建中包含化石的刻意整合发展思维,推动了向更新范式的转变。结构指纹是一种可识别的形态和解剖结构,由发育过程中特定基因和调控途径的部署产生(并反映)。此外,由于植物的发育调控在本质上是模块化和分层的,将化石记录中识别的结构指纹与我们对这些结构的发育调控的理解结合起来,为理解植物进化提供了一个有力的工具。当在进化(古进化-发展)框架内观察特定发育调节机制和模块的系统分布时,这一点尤其正确。在这里,我们讨论了在理解进化过程和模式方面的几个进展,通过追踪结构指纹及其潜在的调节模块,跨越谱系,活的和化石:极性生长素调节在次生木质部的细胞模式中的作用,以及在石松植物和种子植物中乔木的平行进化;早期多孢子囊植物和管生植物的形态和生活史模块化在胡杨植物叶片平行进化中的作用幼嫩植物叶片分生组织活动与脉纹模式平行演化调控模块的镶嵌布局与幼嫩植物次生生长模式的多样性发育调节中的模块性和层次性与马类生殖形态的进化。更广泛地说,将植物化石纳入进化-发展范式已经为关于生长模式和生长反应的进化、孢子体形体计划及其同源性、性状进化序列和生殖系统进化的讨论提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evodevo
Evodevo EVOLUTIONARY BIOLOGY-DEVELOPMENTAL BIOLOGY
CiteScore
7.50
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo. The focus of the journal is on research that promotes understanding of the pattern and process of morphological evolution. All articles that fulfill this aim will be welcome, in particular: evolution of pattern; formation comparative gene function/expression; life history evolution; homology and character evolution; comparative genomics; phylogenetics and palaeontology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信