SIGEST

IF 10.8 1区 数学 Q1 MATHEMATICS, APPLIED
SIAM Review Pub Date : 2022-11-03 DOI:10.1137/22n975573
The Editors
{"title":"SIGEST","authors":"The Editors","doi":"10.1137/22n975573","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 64, Issue 4, Page 989-989, November 2022. <br/> The SIGEST article in this issue is “A Proximal Markov Chain Monte Carlo Method for Bayesian Inference in Imaging Inverse Problems: When Langevin Meets Moreau,” by Alain Durmus, Éric Moulines, and Marcelo Pereyra. The authors provide new algorithms to sample from high-dimensional log-concave probability measures, where they combine Moreau--Yosida envelopes with the Euler--Maruyama discretization of Langevin diffusions. This allows for an efficient Markov chain Monte Carlo methodology that is applicable to inverse problems arising in imaging sciences. Asymptotic and nonasymptotic convergence results are provided, along with extensive computational experiments on realistic imaging problems involving deconvolution and tomographic reconstruction. The original article, which appeared in the SIAM Journal on Imaging Sciences in 2018, has attracted substantial interest. In preparing this highlighted SIGEST version, the authors have expanded the introduction to make it accessible to a wide audience. The final section also discusses follow-up work arising from the original publication.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"166 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22n975573","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Review, Volume 64, Issue 4, Page 989-989, November 2022.
The SIGEST article in this issue is “A Proximal Markov Chain Monte Carlo Method for Bayesian Inference in Imaging Inverse Problems: When Langevin Meets Moreau,” by Alain Durmus, Éric Moulines, and Marcelo Pereyra. The authors provide new algorithms to sample from high-dimensional log-concave probability measures, where they combine Moreau--Yosida envelopes with the Euler--Maruyama discretization of Langevin diffusions. This allows for an efficient Markov chain Monte Carlo methodology that is applicable to inverse problems arising in imaging sciences. Asymptotic and nonasymptotic convergence results are provided, along with extensive computational experiments on realistic imaging problems involving deconvolution and tomographic reconstruction. The original article, which appeared in the SIAM Journal on Imaging Sciences in 2018, has attracted substantial interest. In preparing this highlighted SIGEST version, the authors have expanded the introduction to make it accessible to a wide audience. The final section also discusses follow-up work arising from the original publication.
SIAM评论,第64卷,第4期,989-989页,2022年11月。这期SIGEST的文章是Alain Durmus, Éric Moulines和Marcelo Pereyra的“成像逆问题中贝叶斯推理的近端马尔可夫链蒙特卡罗方法:当Langevin遇到Moreau时”。作者提供了从高维对数凹概率测度中采样的新算法,其中他们将莫罗-Yosida包络与朗之万扩散的欧拉-丸山离散相结合。这允许一个有效的马尔可夫链蒙特卡罗方法,适用于在成像科学中出现的逆问题。提供了渐近和非渐近收敛结果,以及涉及反卷积和层析重建的实际成像问题的大量计算实验。最初的文章发表在2018年的SIAM成像科学杂志上,引起了极大的兴趣。在准备这个突出的SIGEST版本时,作者已经扩展了介绍,使其能够被广泛的读者访问。最后一节还讨论了原始出版物的后续工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Review
SIAM Review 数学-应用数学
CiteScore
16.90
自引率
0.00%
发文量
50
期刊介绍: Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter. Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信