{"title":"Scattering-based hybrid network for facial attribute classification","authors":"Na Liu, Fan Zhang, Liang Chang, Fuqing Duan","doi":"10.1007/s11704-023-2570-6","DOIUrl":null,"url":null,"abstract":"<p>Face attribute classification (FAC) is a high-profile problem in biometric verification and face retrieval. Although recent research has been devoted to extracting more delicate image attribute features and exploiting the inter-attribute correlations, significant challenges still remain. Wavelet scattering transform (WST) is a promising non-learned feature extractor. It has been shown to yield more discriminative representations and outperforms the learned representations in certain tasks. Applied to the image classification task, WST can enhance subtle image texture information and create local deformation stability. This paper designs a scattering-based hybrid block, to incorporate frequency-domain (WST) and image-domain features in a channel attention manner (Squeeze-and-Excitation, SE), termed WS-SE block. Compared with CNN, WS-SE achieves a more efficient FAC performance and compensates for the model sensitivity of the small-scale affine transform. In addition, to further exploit the relationships among the attribute labels, we propose a learning strategy from a causal view. The cause attributes defined using the causality-related information can be utilized to infer the <i>effect attributes</i> with a high confidence level. Ablative analysis experiments demonstrate the effectiveness of our model, and our hybrid model obtains state-of-the-art results in two public datasets.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"27 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-2570-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Face attribute classification (FAC) is a high-profile problem in biometric verification and face retrieval. Although recent research has been devoted to extracting more delicate image attribute features and exploiting the inter-attribute correlations, significant challenges still remain. Wavelet scattering transform (WST) is a promising non-learned feature extractor. It has been shown to yield more discriminative representations and outperforms the learned representations in certain tasks. Applied to the image classification task, WST can enhance subtle image texture information and create local deformation stability. This paper designs a scattering-based hybrid block, to incorporate frequency-domain (WST) and image-domain features in a channel attention manner (Squeeze-and-Excitation, SE), termed WS-SE block. Compared with CNN, WS-SE achieves a more efficient FAC performance and compensates for the model sensitivity of the small-scale affine transform. In addition, to further exploit the relationships among the attribute labels, we propose a learning strategy from a causal view. The cause attributes defined using the causality-related information can be utilized to infer the effect attributes with a high confidence level. Ablative analysis experiments demonstrate the effectiveness of our model, and our hybrid model obtains state-of-the-art results in two public datasets.
期刊介绍:
Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.