Balancing graph Voronoi diagrams with one more vertex

IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Networks Pub Date : 2023-11-21 DOI:10.1002/net.22198
Guillaume Ducoffe
{"title":"Balancing graph Voronoi diagrams with one more vertex","authors":"Guillaume Ducoffe","doi":"10.1002/net.22198","DOIUrl":null,"url":null,"abstract":"Let <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0001\" display=\"inline\" location=\"graphic/net22198-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n<mo>=</mo>\n<mo stretchy=\"false\">(</mo>\n<mi>V</mi>\n<mo>,</mo>\n<mi>E</mi>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ G=\\left(V,E\\right) $$</annotation>\n</semantics></math> be a graph with unit-length edges and nonnegative costs assigned to its vertices. Given a list of pairwise different vertices <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0002\" display=\"inline\" location=\"graphic/net22198-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>S</mi>\n<mo>=</mo>\n<mo stretchy=\"false\">(</mo>\n<msub>\n<mrow>\n<mi>s</mi>\n</mrow>\n<mrow>\n<mn>1</mn>\n</mrow>\n</msub>\n<mo>,</mo>\n<msub>\n<mrow>\n<mi>s</mi>\n</mrow>\n<mrow>\n<mn>2</mn>\n</mrow>\n</msub>\n<mo>,</mo>\n<mi>…</mi>\n<mo>,</mo>\n<msub>\n<mrow>\n<mi>s</mi>\n</mrow>\n<mrow>\n<mi>p</mi>\n</mrow>\n</msub>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ S=\\left({s}_1,{s}_2,\\dots, {s}_p\\right) $$</annotation>\n</semantics></math>, the <i>prioritized Voronoi diagram</i> of <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0003\" display=\"inline\" location=\"graphic/net22198-math-0003.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math> with respect to <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0004\" display=\"inline\" location=\"graphic/net22198-math-0004.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>S</mi>\n</mrow>\n$$ S $$</annotation>\n</semantics></math> is the partition of <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0005\" display=\"inline\" location=\"graphic/net22198-math-0005.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math> in <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0006\" display=\"inline\" location=\"graphic/net22198-math-0006.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>p</mi>\n</mrow>\n$$ p $$</annotation>\n</semantics></math> subsets <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0007\" display=\"inline\" location=\"graphic/net22198-math-0007.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msub>\n<mrow>\n<mi>V</mi>\n</mrow>\n<mrow>\n<mn>1</mn>\n</mrow>\n</msub>\n<mo>,</mo>\n<msub>\n<mrow>\n<mi>V</mi>\n</mrow>\n<mrow>\n<mn>2</mn>\n</mrow>\n</msub>\n<mo>,</mo>\n<mi>…</mi>\n<mo>,</mo>\n<msub>\n<mrow>\n<mi>V</mi>\n</mrow>\n<mrow>\n<mi>p</mi>\n</mrow>\n</msub>\n</mrow>\n$$ {V}_1,{V}_2,\\dots, {V}_p $$</annotation>\n</semantics></math> so that, for every <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0008\" display=\"inline\" location=\"graphic/net22198-math-0008.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>i</mi>\n</mrow>\n$$ i $$</annotation>\n</semantics></math> with <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0009\" display=\"inline\" location=\"graphic/net22198-math-0009.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mn>1</mn>\n<mo>≤</mo>\n<mi>i</mi>\n<mo>≤</mo>\n<mi>p</mi>\n</mrow>\n$$ 1\\le i\\le p $$</annotation>\n</semantics></math>, a vertex <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0010\" display=\"inline\" location=\"graphic/net22198-math-0010.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>v</mi>\n</mrow>\n$$ v $$</annotation>\n</semantics></math> is in <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0011\" display=\"inline\" location=\"graphic/net22198-math-0011.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msub>\n<mrow>\n<mi>V</mi>\n</mrow>\n<mrow>\n<mi>i</mi>\n</mrow>\n</msub>\n</mrow>\n$$ {V}_i $$</annotation>\n</semantics></math> if and only if <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0012\" display=\"inline\" location=\"graphic/net22198-math-0012.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msub>\n<mrow>\n<mi>s</mi>\n</mrow>\n<mrow>\n<mi>i</mi>\n</mrow>\n</msub>\n</mrow>\n$$ {s}_i $$</annotation>\n</semantics></math> is a closest vertex to <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0013\" display=\"inline\" location=\"graphic/net22198-math-0013.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>v</mi>\n</mrow>\n$$ v $$</annotation>\n</semantics></math> in <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0014\" display=\"inline\" location=\"graphic/net22198-math-0014.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>S</mi>\n</mrow>\n$$ S $$</annotation>\n</semantics></math> and there is no closest vertex to <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0015\" display=\"inline\" location=\"graphic/net22198-math-0015.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>v</mi>\n</mrow>\n$$ v $$</annotation>\n</semantics></math> in <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0016\" display=\"inline\" location=\"graphic/net22198-math-0016.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>S</mi>\n</mrow>\n$$ S $$</annotation>\n</semantics></math> within the subset <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0017\" display=\"inline\" location=\"graphic/net22198-math-0017.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mo stretchy=\"false\">{</mo>\n<msub>\n<mrow>\n<mi>s</mi>\n</mrow>\n<mrow>\n<mn>1</mn>\n</mrow>\n</msub>\n<mo>,</mo>\n<msub>\n<mrow>\n<mi>s</mi>\n</mrow>\n<mrow>\n<mn>2</mn>\n</mrow>\n</msub>\n<mo>,</mo>\n<mi>…</mi>\n<mo>,</mo>\n<msub>\n<mrow>\n<mi>s</mi>\n</mrow>\n<mrow>\n<mi>i</mi>\n<mo form=\"prefix\">−</mo>\n<mn>1</mn>\n</mrow>\n</msub>\n<mo stretchy=\"false\">}</mo>\n</mrow>\n$$ \\left\\{{s}_1,{s}_2,\\dots, {s}_{i-1}\\right\\} $$</annotation>\n</semantics></math>. For every <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0018\" display=\"inline\" location=\"graphic/net22198-math-0018.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>i</mi>\n</mrow>\n$$ i $$</annotation>\n</semantics></math> with <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0019\" display=\"inline\" location=\"graphic/net22198-math-0019.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mn>1</mn>\n<mo>≤</mo>\n<mi>i</mi>\n<mo>≤</mo>\n<mi>p</mi>\n</mrow>\n$$ 1\\le i\\le p $$</annotation>\n</semantics></math>, the <i>load</i> of vertex <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0020\" display=\"inline\" location=\"graphic/net22198-math-0020.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msub>\n<mrow>\n<mi>s</mi>\n</mrow>\n<mrow>\n<mi>i</mi>\n</mrow>\n</msub>\n</mrow>\n$$ {s}_i $$</annotation>\n</semantics></math> equals the sum of the costs of all vertices in <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0021\" display=\"inline\" location=\"graphic/net22198-math-0021.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<msub>\n<mrow>\n<mi>V</mi>\n</mrow>\n<mrow>\n<mi>i</mi>\n</mrow>\n</msub>\n</mrow>\n$$ {V}_i $$</annotation>\n</semantics></math>. The load of <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0022\" display=\"inline\" location=\"graphic/net22198-math-0022.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>S</mi>\n</mrow>\n$$ S $$</annotation>\n</semantics></math> equals the maximum load of a vertex in <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0023\" display=\"inline\" location=\"graphic/net22198-math-0023.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>S</mi>\n</mrow>\n$$ S $$</annotation>\n</semantics></math>. We study the problem of adding one more vertex <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0024\" display=\"inline\" location=\"graphic/net22198-math-0024.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>v</mi>\n</mrow>\n$$ v $$</annotation>\n</semantics></math> at the end of <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0025\" display=\"inline\" location=\"graphic/net22198-math-0025.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>S</mi>\n</mrow>\n$$ S $$</annotation>\n</semantics></math> in order to minimize the load. This problem occurs in the context of optimally locating a new service facility (e.g., a school or a hospital) while taking into account already existing facilities, and with the goal of minimizing the maximum congestion at a site. There is a brute-force algorithm for solving this problem in <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0026\" display=\"inline\" location=\"graphic/net22198-math-0026.png\" overflow=\"scroll\">\n<mrow>\n<mi>𝒪</mi>\n<mo stretchy=\"false\">(</mo>\n<mi>n</mi>\n<mi>m</mi>\n<mo stretchy=\"false\">)</mo>\n</mrow></math> time on <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0027\" display=\"inline\" location=\"graphic/net22198-math-0027.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>n</mi>\n</mrow>\n$$ n $$</annotation>\n</semantics></math>-vertex <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0028\" display=\"inline\" location=\"graphic/net22198-math-0028.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>m</mi>\n</mrow>\n$$ m $$</annotation>\n</semantics></math>-edge graphs. We prove a matching time lower bound–up to sub-polynomial factors–for the special case where <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0029\" display=\"inline\" location=\"graphic/net22198-math-0029.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>m</mi>\n<mo>=</mo>\n<msup>\n<mrow>\n<mi>n</mi>\n</mrow>\n<mrow>\n<mn>1</mn>\n<mo>+</mo>\n<mi>o</mi>\n<mo stretchy=\"false\">(</mo>\n<mn>1</mn>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n</msup>\n</mrow>\n$$ m={n}^{1+o(1)} $$</annotation>\n</semantics></math> and <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0030\" display=\"inline\" location=\"graphic/net22198-math-0030.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>p</mi>\n<mo>=</mo>\n<mn>1</mn>\n</mrow>\n$$ p=1 $$</annotation>\n</semantics></math>, assuming the so called Hitting Set Conjecture of Abboud et al. On the positive side, we present simple linear-time algorithms for this problem on cliques, paths and cycles, and almost linear-time algorithms for trees, proper interval graphs and (assuming <math altimg=\"urn:x-wiley:net:media:net22198:net22198-math-0031\" display=\"inline\" location=\"graphic/net22198-math-0031.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>p</mi>\n</mrow>\n$$ p $$</annotation>\n</semantics></math> to be a constant) bounded-treewidth graphs.","PeriodicalId":54734,"journal":{"name":"Networks","volume":"9 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/net.22198","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Let G = ( V , E ) $$ G=\left(V,E\right) $$ be a graph with unit-length edges and nonnegative costs assigned to its vertices. Given a list of pairwise different vertices S = ( s 1 , s 2 , , s p ) $$ S=\left({s}_1,{s}_2,\dots, {s}_p\right) $$ , the prioritized Voronoi diagram of G $$ G $$ with respect to S $$ S $$ is the partition of G $$ G $$ in p $$ p $$ subsets V 1 , V 2 , , V p $$ {V}_1,{V}_2,\dots, {V}_p $$ so that, for every i $$ i $$ with 1 i p $$ 1\le i\le p $$ , a vertex v $$ v $$ is in V i $$ {V}_i $$ if and only if s i $$ {s}_i $$ is a closest vertex to v $$ v $$ in S $$ S $$ and there is no closest vertex to v $$ v $$ in S $$ S $$ within the subset { s 1 , s 2 , , s i 1 } $$ \left\{{s}_1,{s}_2,\dots, {s}_{i-1}\right\} $$ . For every i $$ i $$ with 1 i p $$ 1\le i\le p $$ , the load of vertex s i $$ {s}_i $$ equals the sum of the costs of all vertices in V i $$ {V}_i $$ . The load of S $$ S $$ equals the maximum load of a vertex in S $$ S $$ . We study the problem of adding one more vertex v $$ v $$ at the end of S $$ S $$ in order to minimize the load. This problem occurs in the context of optimally locating a new service facility (e.g., a school or a hospital) while taking into account already existing facilities, and with the goal of minimizing the maximum congestion at a site. There is a brute-force algorithm for solving this problem in 𝒪 ( n m ) time on n $$ n $$ -vertex m $$ m $$ -edge graphs. We prove a matching time lower bound–up to sub-polynomial factors–for the special case where m = n 1 + o ( 1 ) $$ m={n}^{1+o(1)} $$ and p = 1 $$ p=1 $$ , assuming the so called Hitting Set Conjecture of Abboud et al. On the positive side, we present simple linear-time algorithms for this problem on cliques, paths and cycles, and almost linear-time algorithms for trees, proper interval graphs and (assuming p $$ p $$ to be a constant) bounded-treewidth graphs.
平衡图Voronoi图与一个多顶点
设G=(V,E) $$ G=\left(V,E\right) $$是一个边长度为单位且顶点代价为非负的图。给定一个成对不同顶点S=(s1,s2,…,sp) $$ S=\left({s}_1,{s}_2,\dots, {s}_p\right) $$的列表,G $$ G $$相对于S $$ S $$的优先Voronoi图是G $$ G $$在p $$ p $$子集V1,V2,…,Vp $$ {V}_1,{V}_2,\dots, {V}_p $$中的划分,使得对于每一个i $$ i $$, 1≤i≤p $$ 1\le i\le p $$,一个顶点v $$ v $$在Vi $$ {V}_i $$当且仅当si $$ {s}_i $$是S $$ S $$中最接近v $$ v $$的顶点,并且在S $$ S $$中在子集s1,s2,…,si−1$$ \left\{{s}_1,{s}_2,\dots, {s}_{i-1}\right\} $$中没有最接近v {}$$ v $$的顶点。对于每一个i $$ i $$, 1≤i≤p $$ 1\le i\le p $$,顶点si $$ {s}_i $$的载荷等于Vi $$ {V}_i $$中所有顶点的代价之和。S $$ S $$的载荷等于S $$ S $$中一个顶点的最大载荷。我们研究了在S $$ S $$的末端再增加一个顶点v $$ v $$以最小化负载的问题。这一问题发生在考虑现有设施的同时,对新服务设施(如学校或医院)进行最佳定位,并以尽量减少站点的最大拥堵为目标的情况下。有一种蛮力算法可以在n个$$ n $$ -顶点m $$ m $$ -边图上的 (nm)时间内解决这个问题。对于m=n1+o(1) $$ m={n}^{1+o(1)} $$和p=1 $$ p=1 $$的特殊情况,假设Abboud等人的所谓命中集猜想,我们证明了一个匹配时间下界到次多项式因子。在积极的方面,我们提出了简单的线性时间算法,用于团,路径和循环问题,以及树,适当间隔图和(假设p $$ p $$是常数)有界树宽图的几乎线性时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Networks
Networks 工程技术-计算机:硬件
CiteScore
4.40
自引率
9.50%
发文量
46
审稿时长
12 months
期刊介绍: Network problems are pervasive in our modern technological society, as witnessed by our reliance on physical networks that provide power, communication, and transportation. As well, a number of processes can be modeled using logical networks, as in the scheduling of interdependent tasks, the dating of archaeological artifacts, or the compilation of subroutines comprising a large computer program. Networks provide a common framework for posing and studying problems that often have wider applicability than their originating context. The goal of this journal is to provide a central forum for the distribution of timely information about network problems, their design and mathematical analysis, as well as efficient algorithms for carrying out optimization on networks. The nonstandard modeling of diverse processes using networks and network concepts is also of interest. Consequently, the disciplines that are useful in studying networks are varied, including applied mathematics, operations research, computer science, discrete mathematics, and economics. Networks publishes material on the analytic modeling of problems using networks, the mathematical analysis of network problems, the design of computationally efficient network algorithms, and innovative case studies of successful network applications. We do not typically publish works that fall in the realm of pure graph theory (without significant algorithmic and modeling contributions) or papers that deal with engineering aspects of network design. Since the audience for this journal is then necessarily broad, articles that impact multiple application areas or that creatively use new or existing methodologies are especially appropriate. We seek to publish original, well-written research papers that make a substantive contribution to the knowledge base. In addition, tutorial and survey articles are welcomed. All manuscripts are carefully refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信