Confirmatory factor analysis of two self-efficacy scales for astronomy understanding and robotic telescope use

IF 2.6 2区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
R. Freed, D. H. McKinnon, M. T. Fitzgerald, S. Salimpour
{"title":"Confirmatory factor analysis of two self-efficacy scales for astronomy understanding and robotic telescope use","authors":"R. Freed, D. H. McKinnon, M. T. Fitzgerald, S. Salimpour","doi":"10.1103/physrevphyseducres.19.020164","DOIUrl":null,"url":null,"abstract":"This paper presents the results of a confirmatory factor analysis on two self-efficacy scales designed to probe the self-efficacy of college-level introductory astronomy (Astro-101) students (<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>n</mi><mo>=</mo><mn>1</mn><mn>5</mn><mn>1</mn><mn>8</mn><mn>1</mn></mrow></math>) from 22 institutions across the United States of America and Canada. The students undertook a course based on similar curriculum materials, which involved students using robotic telescopes to support their learning of astronomical concepts covered in the “traditional” Astro-101 courses. Previous research by the authors using these self-efficacy scales within a pre-/post-test approach showed both high reliabilities and very high construct validities. However, the scale purporting to measure students’ self-efficacy in relation to their use of the astronomical instrumentation associated with online robotic telescopes was particularly skewed and required further investigation. This current study builds on the previous work and shows how a slight adjustment of the survey items presents an improved and robust scale for measuring self-efficacy.","PeriodicalId":54296,"journal":{"name":"Physical Review Physics Education Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Physics Education Research","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1103/physrevphyseducres.19.020164","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the results of a confirmatory factor analysis on two self-efficacy scales designed to probe the self-efficacy of college-level introductory astronomy (Astro-101) students (n=15181) from 22 institutions across the United States of America and Canada. The students undertook a course based on similar curriculum materials, which involved students using robotic telescopes to support their learning of astronomical concepts covered in the “traditional” Astro-101 courses. Previous research by the authors using these self-efficacy scales within a pre-/post-test approach showed both high reliabilities and very high construct validities. However, the scale purporting to measure students’ self-efficacy in relation to their use of the astronomical instrumentation associated with online robotic telescopes was particularly skewed and required further investigation. This current study builds on the previous work and shows how a slight adjustment of the survey items presents an improved and robust scale for measuring self-efficacy.

Abstract Image

天文理解和机器人望远镜使用两个自我效能量表的验证性因子分析
本文采用验证性因子分析方法,对来自美国和加拿大22所院校的天文学入门专业(Astro-101)学生(n=15181人)设计的两种自我效能感量表进行了研究。学生们在类似的课程材料基础上选修了一门课程,这门课程涉及学生使用机器人望远镜来支持他们学习“传统”天文学101课程中涵盖的天文学概念。作者先前的研究使用这些自我效能量表在前/后测试方法中显示出高信度和非常高的结构效度。然而,旨在衡量学生使用与在线机器人望远镜相关的天文仪器的自我效能感的量表尤其扭曲,需要进一步调查。本研究建立在先前研究的基础上,并展示了如何对调查项目进行轻微调整,以改善和健全自我效能的测量量表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review Physics Education Research
Physical Review Physics Education Research Social Sciences-Education
CiteScore
5.70
自引率
41.90%
发文量
84
审稿时长
32 weeks
期刊介绍: PRPER covers all educational levels, from elementary through graduate education. All topics in experimental and theoretical physics education research are accepted, including, but not limited to: Educational policy Instructional strategies, and materials development Research methodology Epistemology, attitudes, and beliefs Learning environment Scientific reasoning and problem solving Diversity and inclusion Learning theory Student participation Faculty and teacher professional development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信