Emily M. Stump, Matthew Dew, Gina Passante, N. G. Holmes
{"title":"Context affects student thinking about sources of uncertainty in classical and quantum mechanics","authors":"Emily M. Stump, Matthew Dew, Gina Passante, N. G. Holmes","doi":"10.1103/physrevphyseducres.19.020157","DOIUrl":null,"url":null,"abstract":"Measurement uncertainty is an important topic in the undergraduate laboratory curriculum. Previous research on student thinking about experimental measurement uncertainty has focused primarily on introductory-level students’ procedural reasoning about data collection and interpretation. In this paper, we extended this prior work to study upper-level students’ thinking about sources of measurement uncertainty across experimental contexts, with a particular focus on classical and quantum mechanics contexts. We developed a survey to probe students’ thinking in the generic question “What comes to mind when you think about measurement uncertainty in [classical/quantum] mechanics?” as well as in a range of specific experimental scenarios and interpreted student responses through the lens of availability and accessibility of knowledge pieces. We found that limitations of the experimental setup were most accessible to students in classical mechanics while principles of the underlying physics theory were most accessible to students in quantum mechanics, even in a context in which this theory was not relevant. We recommend that future research probe which sources of uncertainty experts believe are relevant in which contexts and how instruction in both classical and quantum contexts can help students draw on appropriate sources of uncertainty in classical and quantum experiments.","PeriodicalId":54296,"journal":{"name":"Physical Review Physics Education Research","volume":"188 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Physics Education Research","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1103/physrevphyseducres.19.020157","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 3
Abstract
Measurement uncertainty is an important topic in the undergraduate laboratory curriculum. Previous research on student thinking about experimental measurement uncertainty has focused primarily on introductory-level students’ procedural reasoning about data collection and interpretation. In this paper, we extended this prior work to study upper-level students’ thinking about sources of measurement uncertainty across experimental contexts, with a particular focus on classical and quantum mechanics contexts. We developed a survey to probe students’ thinking in the generic question “What comes to mind when you think about measurement uncertainty in [classical/quantum] mechanics?” as well as in a range of specific experimental scenarios and interpreted student responses through the lens of availability and accessibility of knowledge pieces. We found that limitations of the experimental setup were most accessible to students in classical mechanics while principles of the underlying physics theory were most accessible to students in quantum mechanics, even in a context in which this theory was not relevant. We recommend that future research probe which sources of uncertainty experts believe are relevant in which contexts and how instruction in both classical and quantum contexts can help students draw on appropriate sources of uncertainty in classical and quantum experiments.
期刊介绍:
PRPER covers all educational levels, from elementary through graduate education. All topics in experimental and theoretical physics education research are accepted, including, but not limited to:
Educational policy
Instructional strategies, and materials development
Research methodology
Epistemology, attitudes, and beliefs
Learning environment
Scientific reasoning and problem solving
Diversity and inclusion
Learning theory
Student participation
Faculty and teacher professional development