Process Parameters Influence Product Yield and Kinetic Parameters in Lipase Catalysis

IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Abir Lal Bose, Debapriya Bhattacharjee, Dr. Debajyoti Goswami
{"title":"Process Parameters Influence Product Yield and Kinetic Parameters in Lipase Catalysis","authors":"Abir Lal Bose,&nbsp;Debapriya Bhattacharjee,&nbsp;Dr. Debajyoti Goswami","doi":"10.1002/cben.202300035","DOIUrl":null,"url":null,"abstract":"<p>Effects of process parameters like enzyme concentration, concentration and type of substrate, pH, temperature, speed of agitation, and pressure on lipase catalysis are reviewed. The enzyme concentration controls its interfacial presence and consequently the rate of reaction. A change in substrate concentration alters lipase kinetics. Substrate-lipase interaction varies with substrate type and pH. Water concentration and agitation affect the extent of interfacial area. Temperature impacts the rate and thermal denaturation of enzymes. Statistical optimization can solve the problem of controlling a variable's effect by other variables. Immobilization support and nonionic surfactant altered the significance of enzyme concentration. The lipase type controlled the impact of concentrations of enzyme, substrate, and water. The water content was important during lipase-catalyzed hydrolysis and esterification. The mode of agitation influenced the significance of enzyme concentration and temperature. Time had a remarkable impact during hydrolysis. Temperature, substrate type, and chain length notably controlled kinetic parameters. This work paves the way for similar studies on other enzymes.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 2","pages":"178-196"},"PeriodicalIF":6.2000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300035","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Effects of process parameters like enzyme concentration, concentration and type of substrate, pH, temperature, speed of agitation, and pressure on lipase catalysis are reviewed. The enzyme concentration controls its interfacial presence and consequently the rate of reaction. A change in substrate concentration alters lipase kinetics. Substrate-lipase interaction varies with substrate type and pH. Water concentration and agitation affect the extent of interfacial area. Temperature impacts the rate and thermal denaturation of enzymes. Statistical optimization can solve the problem of controlling a variable's effect by other variables. Immobilization support and nonionic surfactant altered the significance of enzyme concentration. The lipase type controlled the impact of concentrations of enzyme, substrate, and water. The water content was important during lipase-catalyzed hydrolysis and esterification. The mode of agitation influenced the significance of enzyme concentration and temperature. Time had a remarkable impact during hydrolysis. Temperature, substrate type, and chain length notably controlled kinetic parameters. This work paves the way for similar studies on other enzymes.

Abstract Image

脂肪酶催化过程中工艺参数对产物收率和动力学参数的影响
综述了酶浓度、底物浓度和种类、pH、温度、搅拌速度和压力等工艺参数对脂肪酶催化的影响。酶的浓度控制其界面的存在,从而控制反应的速率。底物浓度的变化会改变脂肪酶动力学。底物与脂肪酶的相互作用随底物类型和ph的不同而不同。水的浓度和搅拌影响界面面积的大小。温度影响酶的速率和热变性。统计优化可以解决由其他变量控制一个变量的效果的问题。固定化载体和非离子表面活性剂改变了酶浓度的意义。脂肪酶类型控制酶、底物和水浓度的影响。在脂肪酶催化的水解和酯化过程中,水的含量是很重要的。搅拌方式对酶浓度和温度有显著影响。时间对水解有显著影响。温度、底物类型和链长明显控制动力学参数。这项工作为其他酶的类似研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemBioEng Reviews
ChemBioEng Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍: Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信