Insufficient Evidence for Multiple Species of Tyrannosaurus in the Latest Cretaceous of North America: A Comment on “The Tyrant Lizard King, Queen and Emperor: Multiple Lines of Morphological and Stratigraphic Evidence Support Subtle Evolution and Probable Speciation Within the North American Genus Tyrannosaurus”
Thomas D. Carr, James G. Napoli, Stephen L. Brusatte, Thomas R. Holtz, David W. E. Hone, Thomas E. Williamson, Lindsay E. Zanno
{"title":"Insufficient Evidence for Multiple Species of Tyrannosaurus in the Latest Cretaceous of North America: A Comment on “The Tyrant Lizard King, Queen and Emperor: Multiple Lines of Morphological and Stratigraphic Evidence Support Subtle Evolution and Probable Speciation Within the North American Genus Tyrannosaurus”","authors":"Thomas D. Carr, James G. Napoli, Stephen L. Brusatte, Thomas R. Holtz, David W. E. Hone, Thomas E. Williamson, Lindsay E. Zanno","doi":"10.1007/s11692-022-09573-1","DOIUrl":null,"url":null,"abstract":"<p>The Late Cretaceous dinosaur <i>Tyrannosaurus rex</i> was recently split into three species based on the premise that variation in the <i>T. rex</i> hypodigm is exceptional, indicating cryptic species and “robust” and “gracile” morphs. The morphs are based on proportional ratios throughout the skeleton. The species are claimed to be stratigraphically separate, with an early robust species followed by robust and gracile descendants. There are problems with the hypothesis: the taxon diagnoses are based on two features that overlap between the species; several skulls cannot be identified based on the diagnoses; proportional comparisons between <i>Tyrannosaurus</i> and other theropods are based on incomparable samples; the tooth data are problematic; the stratigraphic framework divides the Hell Creek Formation into thirds, without the stratigraphic position of each specimen, or independent age control showing the subdivisions are coeval over the entire geographic area; previous work found variation in <i>T. rex</i>, but it cannot be parsed into discrete categories. We tested for “gracile” and “robust” morphs by analyzing the femoral and tooth ratios that were published in the multiple species study using agglomerative hierarchical clustering. The results found that each set of ratios are explained by one cluster, showing that dimorphism is not supported. We tested for exceptional variation of the femoral ratio of <i>Tyrannosaurus</i>; we calculated the mean intraspecific robusticity for 112 species of living birds and 4 nonavian theropods. The results showed that the absolute variation in <i>Tyrannosaurus</i> is unexceptional and it does not indicate cryptic diversity. We conclude that “<i>T. regina</i>” and “<i>T. imperator</i>” are subjective junior synonyms of <i>T. rex</i>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11692-022-09573-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Late Cretaceous dinosaur Tyrannosaurus rex was recently split into three species based on the premise that variation in the T. rex hypodigm is exceptional, indicating cryptic species and “robust” and “gracile” morphs. The morphs are based on proportional ratios throughout the skeleton. The species are claimed to be stratigraphically separate, with an early robust species followed by robust and gracile descendants. There are problems with the hypothesis: the taxon diagnoses are based on two features that overlap between the species; several skulls cannot be identified based on the diagnoses; proportional comparisons between Tyrannosaurus and other theropods are based on incomparable samples; the tooth data are problematic; the stratigraphic framework divides the Hell Creek Formation into thirds, without the stratigraphic position of each specimen, or independent age control showing the subdivisions are coeval over the entire geographic area; previous work found variation in T. rex, but it cannot be parsed into discrete categories. We tested for “gracile” and “robust” morphs by analyzing the femoral and tooth ratios that were published in the multiple species study using agglomerative hierarchical clustering. The results found that each set of ratios are explained by one cluster, showing that dimorphism is not supported. We tested for exceptional variation of the femoral ratio of Tyrannosaurus; we calculated the mean intraspecific robusticity for 112 species of living birds and 4 nonavian theropods. The results showed that the absolute variation in Tyrannosaurus is unexceptional and it does not indicate cryptic diversity. We conclude that “T. regina” and “T. imperator” are subjective junior synonyms of T. rex.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.