Words fixing the kernel network and maximum independent sets in graphs

Maximilien Gadouleau, David C. Kutner
{"title":"Words fixing the kernel network and maximum independent sets in graphs","authors":"Maximilien Gadouleau, David C. Kutner","doi":"arxiv-2307.05216","DOIUrl":null,"url":null,"abstract":"The simple greedy algorithm to find a maximal independent set of a graph can\nbe viewed as a sequential update of a Boolean network, where the update\nfunction at each vertex is the conjunction of all the negated variables in its\nneighbourhood. In general, the convergence of the so-called kernel network is\ncomplex. A word (sequence of vertices) fixes the kernel network if applying the\nupdates sequentially according to that word. We prove that determining whether\na word fixes the kernel network is coNP-complete. We also consider the\nso-called permis, which are permutation words that fix the kernel network. We\nexhibit large classes of graphs that have a permis, but we also construct many\ngraphs without a permis.","PeriodicalId":501231,"journal":{"name":"arXiv - PHYS - Cellular Automata and Lattice Gases","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2307.05216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The simple greedy algorithm to find a maximal independent set of a graph can be viewed as a sequential update of a Boolean network, where the update function at each vertex is the conjunction of all the negated variables in its neighbourhood. In general, the convergence of the so-called kernel network is complex. A word (sequence of vertices) fixes the kernel network if applying the updates sequentially according to that word. We prove that determining whether a word fixes the kernel network is coNP-complete. We also consider the so-called permis, which are permutation words that fix the kernel network. We exhibit large classes of graphs that have a permis, but we also construct many graphs without a permis.
确定图中的核网络和最大独立集的词
寻找图的最大独立集的简单贪婪算法可以看作是布尔网络的顺序更新,其中每个顶点的updatefunction是其邻域中所有负变量的结合。一般来说,所谓核网络的收敛性是复杂的。如果按照单词顺序应用更新,则一个单词(顶点序列)将修复内核网络。我们证明了判断一个词是否固定内核网络是conp完全的。我们还考虑了所谓的permis,它们是固定内核网络的排列词。我们展示了大量具有许可的图,但我们也构造了许多没有许可的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信