A classification of some thick subcategories in locally noetherian Grothendieck categories

Pub Date : 2023-11-23 DOI:10.1017/s001708952300040x
Kaili Wu, Xinchao Ma
{"title":"A classification of some thick subcategories in locally noetherian Grothendieck categories","authors":"Kaili Wu, Xinchao Ma","doi":"10.1017/s001708952300040x","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952300040X_inline1.png\" /> <jats:tex-math> $\\mathcal{A}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a locally noetherian Grothendieck category. We classify all full subcategories of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952300040X_inline2.png\" /> <jats:tex-math> $\\mathcal{A}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> which are thick and closed under taking arbitrary direct sums and injective envelopes by injective spectrum. This result gives a generalization from the commutative noetherian ring to the locally noetherian Grothendieck category.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s001708952300040x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathcal{A}$ be a locally noetherian Grothendieck category. We classify all full subcategories of $\mathcal{A}$ which are thick and closed under taking arbitrary direct sums and injective envelopes by injective spectrum. This result gives a generalization from the commutative noetherian ring to the locally noetherian Grothendieck category.
分享
查看原文
局部noetherian Grothendieck类中一些厚子类的分类
设$\mathcal{A}$是一个局部noetherian Grothendieck范畴。我们用内射谱对$\mathcal{A}$的厚且在取任意直接和和内射包络下闭的所有满子范畴进行了分类。这个结果给出了从交换诺埃环到局部诺埃格罗滕狄克范畴的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信