A Helfrich functional for compact surfaces in

Pub Date : 2023-10-04 DOI:10.1017/s0017089523000320
Zhongwei Yao
{"title":"A Helfrich functional for compact surfaces in","authors":"Zhongwei Yao","doi":"10.1017/s0017089523000320","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$f\\;:\\; M\\rightarrow \\mathbb{C}P^{2}$</span></span></img></span></span> be an isometric immersion of a compact surface in the complex projective plane <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb{C}P^{2}$</span></span></img></span></span>. In this paper, we consider the Helfrich-type functional <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal{H}_{\\lambda _{1},\\lambda _{2}}(f)=\\int _{M}(|H|^{2}+\\lambda _{1}+\\lambda _{2} C^{2})\\textrm{d} M$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda _{1}, \\lambda _{2}\\in \\mathbb{R}$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda _{1}\\geqslant 0$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$C$</span></span></img></span></span> are respectively the mean curvature vector and the Kähler function of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$M$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb{C}P^{2}$</span></span></img></span></span>. The critical surfaces of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal{H}_{\\lambda _{1},\\lambda _{2}}(f)$</span></span></span></span> are called Helfrich surfaces. We compute the first variation of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathcal{H}_{\\lambda _{1},\\lambda _{2}}(f)$</span></span></span></span> and classify the homogeneous Helfrich tori in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231003124134699-0703:S0017089523000320:S0017089523000320_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathbb{C}P^{2}$</span></span></span></span>. Moreover, we study the Helfrich energy of the homogeneous tori and show the lower bound of the Helfrich energy for such tori.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089523000320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let Abstract Image$f\;:\; M\rightarrow \mathbb{C}P^{2}$ be an isometric immersion of a compact surface in the complex projective plane Abstract Image$\mathbb{C}P^{2}$. In this paper, we consider the Helfrich-type functional Abstract Image$\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)=\int _{M}(|H|^{2}+\lambda _{1}+\lambda _{2} C^{2})\textrm{d} M$, where Abstract Image$\lambda _{1}, \lambda _{2}\in \mathbb{R}$ with Abstract Image$\lambda _{1}\geqslant 0$, Abstract Image$H$ and Abstract Image$C$ are respectively the mean curvature vector and the Kähler function of Abstract Image$M$ in Abstract Image$\mathbb{C}P^{2}$. The critical surfaces of Abstract Image$\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ are called Helfrich surfaces. We compute the first variation of Abstract Image$\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$ and classify the homogeneous Helfrich tori in Abstract Image$\mathbb{C}P^{2}$. Moreover, we study the Helfrich energy of the homogeneous tori and show the lower bound of the Helfrich energy for such tori.

分享
查看原文
中紧曲面的helrich泛函
设$f\;:\; M\rightarrow \mathbb{C}P^{2}$为紧曲面在复射影平面$\mathbb{C}P^{2}$中的等距浸没。本文考虑helfrich型函数$\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)=\int _{M}(|H|^{2}+\lambda _{1}+\lambda _{2} C^{2})\textrm{d} M$,其中$\lambda _{1}, \lambda _{2}\in \mathbb{R}$与$\lambda _{1}\geqslant 0$、$H$和$C$分别为$\mathbb{C}P^{2}$中的$M$的平均曲率矢量和Kähler函数。$\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$的临界曲面称为helrich曲面。我们计算了$\mathcal{H}_{\lambda _{1},\lambda _{2}}(f)$的第一个变量,并在$\mathbb{C}P^{2}$中对齐次helrich环面进行了分类。此外,我们研究了齐次环面helrich能量,并给出了这种环面helrich能量的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信