{"title":"On -unramified extensions over imaginary quadratic fields","authors":"Kwang-Seob Kim, Joachim König","doi":"10.1017/s001708952300037x","DOIUrl":null,"url":null,"abstract":"<jats:p>Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952300037X_inline2.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an integer congruent to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952300037X_inline3.png\" /> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952300037X_inline4.png\" /> <jats:tex-math> $3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> modulo <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952300037X_inline5.png\" /> <jats:tex-math> $4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Under the assumption of the ABC conjecture, we prove that, given any integer <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952300037X_inline6.png\" /> <jats:tex-math> $m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> fulfilling only a certain coprimeness condition, there exist infinitely many imaginary quadratic fields having an everywhere unramified Galois extension of group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S001708952300037X_inline7.png\" /> <jats:tex-math> $A_n \\times C_m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The same result is obtained unconditionally in special cases.</jats:p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s001708952300037x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $n$ be an integer congruent to $0$ or $3$ modulo $4$ . Under the assumption of the ABC conjecture, we prove that, given any integer $m$ fulfilling only a certain coprimeness condition, there exist infinitely many imaginary quadratic fields having an everywhere unramified Galois extension of group $A_n \times C_m$ . The same result is obtained unconditionally in special cases.