{"title":"Functional decoration on a regenerable bifunctional porous covalent organic framework probe for rapid detection and adsorption of copper ions","authors":"Yu-Long Li, Xi-Lang Jin, Yi-Ting Ma, Jing-Rui Liu, Fazal Raziq, Peng-Yuan Zhu, Zhi-Feng Deng, Hong-Wei Zhou, Wei-Xing Chen, Wen-Huan Huang","doi":"10.1007/s12598-023-02476-w","DOIUrl":null,"url":null,"abstract":"<p>Developing fluorescence porous probe for detecting and eliminating Cu<sup>2+</sup> contamination in water or biosystem is an essential research project that has attracted considerable attention. However, improving the fluorescence detecting efficiency while enhancing the adsorption capacity of the porous probe is of great challenge. Herein, a bifunctional two-dimensional imine-based porous covalent organic framework (TTP-COF) probe was designed and synthesized from 1,3,5-tris (4-aminophenyl) benzene (TAPB) and 2,4,6-Triformylphloroglucinol (TP) ligand. TTP-COF displayed rapid detection of Cu<sup>2+</sup> (limit of detection (LOD) = 10 nmol·L<sup>−1</sup> while achieving a high adsorption capacity of 214 mg·g<sup>−1</sup> (pH = 6) at room temperature with high reusability (> 5 cycles). The key roles and contributions of high π-conjugate and delocalized electrons in TABP and functional –OH groups in TP were proved. More importantly, the fluorescence quenching mechanism of TTP-COF was studied by density functional theory theoretical calculations, revealing the crucial role of intramolecular hydrogen bonds among C=N and –OH groups and the blocking of the excited state intramolecular proton transfer process in detecting process of Cu<sup>2+</sup>.</p>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"43 2","pages":"758 - 769"},"PeriodicalIF":9.6000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-023-02476-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing fluorescence porous probe for detecting and eliminating Cu2+ contamination in water or biosystem is an essential research project that has attracted considerable attention. However, improving the fluorescence detecting efficiency while enhancing the adsorption capacity of the porous probe is of great challenge. Herein, a bifunctional two-dimensional imine-based porous covalent organic framework (TTP-COF) probe was designed and synthesized from 1,3,5-tris (4-aminophenyl) benzene (TAPB) and 2,4,6-Triformylphloroglucinol (TP) ligand. TTP-COF displayed rapid detection of Cu2+ (limit of detection (LOD) = 10 nmol·L−1 while achieving a high adsorption capacity of 214 mg·g−1 (pH = 6) at room temperature with high reusability (> 5 cycles). The key roles and contributions of high π-conjugate and delocalized electrons in TABP and functional –OH groups in TP were proved. More importantly, the fluorescence quenching mechanism of TTP-COF was studied by density functional theory theoretical calculations, revealing the crucial role of intramolecular hydrogen bonds among C=N and –OH groups and the blocking of the excited state intramolecular proton transfer process in detecting process of Cu2+.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.