Effective stochastic local volatility models

IF 1.5 4区 经济学 Q3 BUSINESS, FINANCE
M. Felpel, J. Kienitz, T.A. McWalter
{"title":"Effective stochastic local volatility models","authors":"M. Felpel, J. Kienitz, T.A. McWalter","doi":"10.1080/14697688.2023.2271514","DOIUrl":null,"url":null,"abstract":"If a high degree of accuracy and market consistency is required for option pricing, stochastic local volatility models are often the approach of choice. When calibrating these types of models, one of the major challenges lies in the proper fitting of the leverage function. This often requires an optimization procedure in terms of computationally intensive numerical methods, such as Monte Carlo simulation, or methods not well suited to local volatility formulations, such as Fourier transform pricing. In this article, we provide an alternative approach using an effective stochastic volatility technique, which provides an efficient semi-analytical approximation of the PDE for the density function of the underlying. This approach allows efficient direct calibration of the leverage function for a large class of stochastic local volatility models, which includes stochastic volatility models such as the SABR, ZABR or Heston model as the underlying base model. We provide calibration and computational schemes and illustrate our approach using numerical experiments.","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"119 1","pages":"1731 - 1750"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/14697688.2023.2271514","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

If a high degree of accuracy and market consistency is required for option pricing, stochastic local volatility models are often the approach of choice. When calibrating these types of models, one of the major challenges lies in the proper fitting of the leverage function. This often requires an optimization procedure in terms of computationally intensive numerical methods, such as Monte Carlo simulation, or methods not well suited to local volatility formulations, such as Fourier transform pricing. In this article, we provide an alternative approach using an effective stochastic volatility technique, which provides an efficient semi-analytical approximation of the PDE for the density function of the underlying. This approach allows efficient direct calibration of the leverage function for a large class of stochastic local volatility models, which includes stochastic volatility models such as the SABR, ZABR or Heston model as the underlying base model. We provide calibration and computational schemes and illustrate our approach using numerical experiments.
有效的随机局部波动模型
如果对期权定价要求较高的准确性和市场一致性,则通常选择随机局部波动率模型。当校准这些类型的模型时,一个…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantitative Finance
Quantitative Finance 社会科学-数学跨学科应用
CiteScore
3.20
自引率
7.70%
发文量
102
审稿时长
4-8 weeks
期刊介绍: The frontiers of finance are shifting rapidly, driven in part by the increasing use of quantitative methods in the field. Quantitative Finance welcomes original research articles that reflect the dynamism of this area. The journal provides an interdisciplinary forum for presenting both theoretical and empirical approaches and offers rapid publication of original new work with high standards of quality. The readership is broad, embracing researchers and practitioners across a range of specialisms and within a variety of organizations. All articles should aim to be of interest to this broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信