ON THE ALGEBRAS

IF 0.5 4区 数学 Q3 MATHEMATICS
REZA ESMAILVANDI, MEHDI NEMATI, NAGESWARAN SHRAVAN KUMAR
{"title":"ON THE ALGEBRAS","authors":"REZA ESMAILVANDI, MEHDI NEMATI, NAGESWARAN SHRAVAN KUMAR","doi":"10.1017/s1446788722000192","DOIUrl":null,"url":null,"abstract":"<p>Let <span>H</span> be an ultraspherical hypergroup and let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231109001332944-0291:S1446788722000192:S1446788722000192_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$A(H)$</span></span></img></span></span> be the Fourier algebra associated with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231109001332944-0291:S1446788722000192:S1446788722000192_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$H.$</span></span></img></span></span> In this paper, we study the dual and the double dual of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231109001332944-0291:S1446788722000192:S1446788722000192_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$A(H).$</span></span></img></span></span> We prove among other things that the subspace of all uniformly continuous functionals on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231109001332944-0291:S1446788722000192:S1446788722000192_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$A(H)$</span></span></img></span></span> forms a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231109001332944-0291:S1446788722000192:S1446788722000192_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$C^*$</span></span></img></span></span>-algebra. We also prove that the double dual <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231109001332944-0291:S1446788722000192:S1446788722000192_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$A(H)^{\\ast \\ast }$</span></span></img></span></span> is neither commutative nor semisimple with respect to the Arens product, unless the underlying hypergroup <span>H</span> is finite. Finally, we study the unit elements of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231109001332944-0291:S1446788722000192:S1446788722000192_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$A(H)^{\\ast \\ast }.$</span></span></img></span></span></p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788722000192","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let H be an ultraspherical hypergroup and let Abstract Image$A(H)$ be the Fourier algebra associated with Abstract Image$H.$ In this paper, we study the dual and the double dual of Abstract Image$A(H).$ We prove among other things that the subspace of all uniformly continuous functionals on Abstract Image$A(H)$ forms a Abstract Image$C^*$-algebra. We also prove that the double dual Abstract Image$A(H)^{\ast \ast }$ is neither commutative nor semisimple with respect to the Arens product, unless the underlying hypergroup H is finite. Finally, we study the unit elements of Abstract Image$A(H)^{\ast \ast }.$

关于代数
设H是超球面超群设A(H)是与H相关的傅里叶代数。本文研究了A(H)的对偶和双对偶。我们证明了A(H)上所有一致连续泛函的子空间形成一个C^* -代数。我们还证明了二重对偶$A(H)^{\ast \ast}$对于Arens积既不是交换的也不是半单的,除非其下的超群H是有限的。最后,我们研究了$A(H)^{\ast \ast}.$的单位元
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信