Teun Boekhout, Anthony S. Amend, Fouad El Baidouri, Toni Gabaldón, József Geml, Moritz Mittelbach, Vincent Robert, Chen Shuhui Tan, Benedetta Turchetti, Duong Vu, Qi-Ming Wang, Andrey Yurkov
{"title":"Trends in yeast diversity discovery","authors":"Teun Boekhout, Anthony S. Amend, Fouad El Baidouri, Toni Gabaldón, József Geml, Moritz Mittelbach, Vincent Robert, Chen Shuhui Tan, Benedetta Turchetti, Duong Vu, Qi-Ming Wang, Andrey Yurkov","doi":"10.1007/s13225-021-00494-6","DOIUrl":null,"url":null,"abstract":"<p>Yeasts, usually defined as unicellular fungi, occur in various fungal lineages. Hence, they are not a taxonomic unit, but rather represent a fungal lifestyle shared by several unrelated lineages. Although the discovery of new yeast species occurs at an increasing speed, at the current rate it will likely take hundreds of years, if ever, before they will all be documented. Many parts of the earth, including many threatened habitats, remain unsampled for yeasts and many others are only superficially studied. Cold habitats, such as glaciers, are home to a specific community of cold-adapted yeasts, and, hence, there is some urgency to study such environments at locations where they might disappear soon due to anthropogenic climate change. The same is true for yeast communities in various natural forests that are impacted by deforestation and forest conversion. Many countries of the so-called Global South have not been sampled for yeasts, despite their economic promise. However, extensive research activity in Asia, especially China, has yielded many taxonomic novelties. Comparative genomics studies have demonstrated the presence of yeast species with a hybrid origin, many of them isolated from clinical or industrial environments. DNA-metabarcoding studies have demonstrated the prevalence, and in some cases dominance, of yeast species in soils and marine waters worldwide, including some surprising distributions, such as the unexpected and likely common presence of <i>Malassezia</i> yeasts in marine habitats.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":null,"pages":null},"PeriodicalIF":24.5000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13225-021-00494-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 24
Abstract
Yeasts, usually defined as unicellular fungi, occur in various fungal lineages. Hence, they are not a taxonomic unit, but rather represent a fungal lifestyle shared by several unrelated lineages. Although the discovery of new yeast species occurs at an increasing speed, at the current rate it will likely take hundreds of years, if ever, before they will all be documented. Many parts of the earth, including many threatened habitats, remain unsampled for yeasts and many others are only superficially studied. Cold habitats, such as glaciers, are home to a specific community of cold-adapted yeasts, and, hence, there is some urgency to study such environments at locations where they might disappear soon due to anthropogenic climate change. The same is true for yeast communities in various natural forests that are impacted by deforestation and forest conversion. Many countries of the so-called Global South have not been sampled for yeasts, despite their economic promise. However, extensive research activity in Asia, especially China, has yielded many taxonomic novelties. Comparative genomics studies have demonstrated the presence of yeast species with a hybrid origin, many of them isolated from clinical or industrial environments. DNA-metabarcoding studies have demonstrated the prevalence, and in some cases dominance, of yeast species in soils and marine waters worldwide, including some surprising distributions, such as the unexpected and likely common presence of Malassezia yeasts in marine habitats.
期刊介绍:
Fungal Diversity, the official journal of the Kunming Institute of Botany of the Chinese Academy of Sciences, is an international, peer-reviewed journal covering all aspects of mycology. It prioritizes papers on biodiversity, systematic, and molecular phylogeny. While it welcomes novel research and review articles, authors aiming to publish checklists are advised to seek regional journals, and the introduction of new species and genera should generally be supported by molecular data.
Published articles undergo peer review and are accessible online first with a permanent DOI, making them citable as the official Version of Record according to NISO RP-8-2008 standards. Any necessary corrections after online publication require the publication of an Erratum.