Lee D. Feinberg, Michael W. McElwain, Charles W. Bowers, John D. Johnston, Gary E. Mosier, Randy A. Kimble, Joshua S. Levi, Paul Lightsey, J. Scott Knight, Marcel Bluth, Alden S. Jurling, Marie B. Levine, D. Scott Acton, Charles Atkinson, Allison Barto, Matthew D. Bergkoetter, Gregory R. Brady, Larkin Carey, Lester Cohen, Laura Coyle, Bruce H. Dean, Michael Eisenhower, Nicolas Flagey, George F. Hartig, Keith A. Havey, Brian Hicks, Joseph M. Howard, Ritva A. Keski-Kuha, Charles-Philippe Lajoie, Matthew D. Lallo, Gary W. Matthews, Marcio Meléndez, Michael T. Menzel, Sang Park, Marshall D. Perrin, Laurent Pueyo, Lisbeth Quesnel, Paul Reynolds, Jane R. Rigby, Babak N. Saif, Christopher C. Stark, Randal Telfer, Scott C. Texter, Julie M. Van Campen, Begoña Vila, Garrett West, Erin Wolf, Tony L. Whitman, Thomas P. Zielinski
{"title":"James Webb Space Telescope optical stability lessons learned for future great observatories","authors":"Lee D. Feinberg, Michael W. McElwain, Charles W. Bowers, John D. Johnston, Gary E. Mosier, Randy A. Kimble, Joshua S. Levi, Paul Lightsey, J. Scott Knight, Marcel Bluth, Alden S. Jurling, Marie B. Levine, D. Scott Acton, Charles Atkinson, Allison Barto, Matthew D. Bergkoetter, Gregory R. Brady, Larkin Carey, Lester Cohen, Laura Coyle, Bruce H. Dean, Michael Eisenhower, Nicolas Flagey, George F. Hartig, Keith A. Havey, Brian Hicks, Joseph M. Howard, Ritva A. Keski-Kuha, Charles-Philippe Lajoie, Matthew D. Lallo, Gary W. Matthews, Marcio Meléndez, Michael T. Menzel, Sang Park, Marshall D. Perrin, Laurent Pueyo, Lisbeth Quesnel, Paul Reynolds, Jane R. Rigby, Babak N. Saif, Christopher C. Stark, Randal Telfer, Scott C. Texter, Julie M. Van Campen, Begoña Vila, Garrett West, Erin Wolf, Tony L. Whitman, Thomas P. Zielinski","doi":"10.1117/1.jatis.10.1.011204","DOIUrl":null,"url":null,"abstract":"The James Webb Space Telescope (JWST) launched on December 25, 2021, and its optical performance in orbit has been even better than predicted pre-flight. The static wavefront error (WFE) is less than half the value specified for the requirement of having diffraction-limited image quality at 2 microns in the NIRCam shortwave channel, enabling the observatory to deliver both sharper images and higher sensitivity than anticipated. In addition to the excellent image quality, the optical stability has also exceeded expectations, both in terms of high-frequency dynamic contributions (which would be perceived as part of “static WFE”) and in terms of drifts over minutes, hours, and days. Stability over long timescales is critical for several important science cases, including exoplanet transit spectroscopy and coronagraphy. JWST’s stability success was achieved through detailed design and testing, with several important lessons learned for future observatories, especially the Habitable Worlds Observatory that is expected to need even higher levels of stability. We review the stability architecture, how it was technologically demonstrated, the ground test results and improvements, the on-orbit results, and the lessons learned.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jatis.10.1.011204","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The James Webb Space Telescope (JWST) launched on December 25, 2021, and its optical performance in orbit has been even better than predicted pre-flight. The static wavefront error (WFE) is less than half the value specified for the requirement of having diffraction-limited image quality at 2 microns in the NIRCam shortwave channel, enabling the observatory to deliver both sharper images and higher sensitivity than anticipated. In addition to the excellent image quality, the optical stability has also exceeded expectations, both in terms of high-frequency dynamic contributions (which would be perceived as part of “static WFE”) and in terms of drifts over minutes, hours, and days. Stability over long timescales is critical for several important science cases, including exoplanet transit spectroscopy and coronagraphy. JWST’s stability success was achieved through detailed design and testing, with several important lessons learned for future observatories, especially the Habitable Worlds Observatory that is expected to need even higher levels of stability. We review the stability architecture, how it was technologically demonstrated, the ground test results and improvements, the on-orbit results, and the lessons learned.
期刊介绍:
The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.