{"title":"A decade of in situ cosmogenic 14C in Antarctica","authors":"Keir Alexander Nichols","doi":"10.1017/aog.2023.13","DOIUrl":null,"url":null,"abstract":"<p>Cosmogenic nuclide measurements in glacial deposits extend our knowledge of glacier chronologies beyond the observational record. The short half-life of in situ cosmogenic <span>14</span>C makes it particularly useful for studying glacier chronologies, as resulting exposure ages are less sensitive to nuclide inheritance when compared with more commonly measured, long-lived nuclides. An increasing number of laboratories using an automated process to extract carbon from quartz has led to in situ <span>14</span>C measurements in Antarctic samples at an accelerating rate over the past decade, shedding light on deglaciation in Antarctica. In situ <span>14</span>C has had the greatest impact in the Weddell Sea Embayment, where inferences on the thickness of ice and timing of deglaciation were limited by inheritance in other cosmogenic nuclide systems. Future subglacial measurements of the nuclide hold much potential as they can provide direct evidence of proposed Holocene thinning and subsequent re-thickening of parts of the Antarctic ice sheets.</p>","PeriodicalId":8211,"journal":{"name":"Annals of Glaciology","volume":"1 2 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/aog.2023.13","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cosmogenic nuclide measurements in glacial deposits extend our knowledge of glacier chronologies beyond the observational record. The short half-life of in situ cosmogenic 14C makes it particularly useful for studying glacier chronologies, as resulting exposure ages are less sensitive to nuclide inheritance when compared with more commonly measured, long-lived nuclides. An increasing number of laboratories using an automated process to extract carbon from quartz has led to in situ 14C measurements in Antarctic samples at an accelerating rate over the past decade, shedding light on deglaciation in Antarctica. In situ 14C has had the greatest impact in the Weddell Sea Embayment, where inferences on the thickness of ice and timing of deglaciation were limited by inheritance in other cosmogenic nuclide systems. Future subglacial measurements of the nuclide hold much potential as they can provide direct evidence of proposed Holocene thinning and subsequent re-thickening of parts of the Antarctic ice sheets.
期刊介绍:
Annals of Glaciology publishes original scientific articles and letters in selected aspects of glaciology-the study of ice. Each issue of the Annals is thematic, focussing on a specific subject. The Council of the International Glaciological Society welcomes proposals for thematic issues from the glaciological community. Once a theme is approved, the Council appoints an Associate Chief Editor and a team of Scientific Editors to handle the submission, peer review and publication of papers.