Collapse and diffusion in harmonic activation and transport

IF 1.2 2区 数学 Q1 MATHEMATICS
Jacob Calvert, Shirshendu Ganguly, Alan Hammond
{"title":"Collapse and diffusion in harmonic activation and transport","authors":"Jacob Calvert, Shirshendu Ganguly, Alan Hammond","doi":"10.1017/fms.2023.81","DOIUrl":null,"url":null,"abstract":"For an <jats:italic>n</jats:italic>-element subset <jats:italic>U</jats:italic> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000816_inline1.png\" /> <jats:tex-math> $\\mathbb {Z}^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, select <jats:italic>x</jats:italic> from <jats:italic>U</jats:italic> according to harmonic measure from infinity, remove <jats:italic>x</jats:italic> from <jats:italic>U</jats:italic> and start a random walk from <jats:italic>x</jats:italic>. If the walk leaves from <jats:italic>y</jats:italic> when it first enters the rest of <jats:italic>U</jats:italic>, add <jats:italic>y</jats:italic> to it. Iterating this procedure constitutes the process we call <jats:italic>harmonic activation and transport</jats:italic> (HAT). HAT exhibits a phenomenon we refer to as <jats:italic>collapse</jats:italic>: Informally, the diameter shrinks to its logarithm over a number of steps which is comparable to this logarithm. Collapse implies the existence of the stationary distribution of HAT, where configurations are viewed up to translation, and the exponential tightness of diameter at stationarity. Additionally, collapse produces a renewal structure with which we establish that the center of mass process, properly rescaled, converges in distribution to two-dimensional Brownian motion. To characterize the phenomenon of collapse, we address fundamental questions about the extremal behavior of harmonic measure and escape probabilities. Among <jats:italic>n</jats:italic>-element subsets of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000816_inline2.png\" /> <jats:tex-math> $\\mathbb {Z}^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, what is the least positive value of harmonic measure? What is the probability of escape from the set to a distance of, say, <jats:italic>d</jats:italic>? Concerning the former, examples abound for which the harmonic measure is exponentially small in <jats:italic>n</jats:italic>. We prove that it can be no smaller than exponential in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000816_inline3.png\" /> <jats:tex-math> $n \\log n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Regarding the latter, the escape probability is at most the reciprocal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000816_inline4.png\" /> <jats:tex-math> $\\log d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, up to a constant factor. We prove it is always at least this much, up to an <jats:italic>n</jats:italic>-dependent factor.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.81","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For an n-element subset U of $\mathbb {Z}^2$ , select x from U according to harmonic measure from infinity, remove x from U and start a random walk from x. If the walk leaves from y when it first enters the rest of U, add y to it. Iterating this procedure constitutes the process we call harmonic activation and transport (HAT). HAT exhibits a phenomenon we refer to as collapse: Informally, the diameter shrinks to its logarithm over a number of steps which is comparable to this logarithm. Collapse implies the existence of the stationary distribution of HAT, where configurations are viewed up to translation, and the exponential tightness of diameter at stationarity. Additionally, collapse produces a renewal structure with which we establish that the center of mass process, properly rescaled, converges in distribution to two-dimensional Brownian motion. To characterize the phenomenon of collapse, we address fundamental questions about the extremal behavior of harmonic measure and escape probabilities. Among n-element subsets of $\mathbb {Z}^2$ , what is the least positive value of harmonic measure? What is the probability of escape from the set to a distance of, say, d? Concerning the former, examples abound for which the harmonic measure is exponentially small in n. We prove that it can be no smaller than exponential in $n \log n$ . Regarding the latter, the escape probability is at most the reciprocal of $\log d$ , up to a constant factor. We prove it is always at least this much, up to an n-dependent factor.
谐波激活和输运中的坍缩和扩散
对于$\mathbb {Z}^2$的n元素子集U,根据从无穷远的调和测度从U中选择x,将x从U中移除并从x开始随机游动。如果游动在第一次进入U的其余部分时从y出发,则将y加入其中。重复这一过程构成了我们称之为谐波激活和输运(HAT)的过程。HAT表现出一种我们称之为坍缩的现象:非正式地说,直径在若干步上缩小到它的对数,这与这个对数相当。坍缩意味着HAT的平稳分布的存在,其中构型被视为平移,并且在平稳时直径的指数紧密性。此外,坍缩产生了一种更新结构,通过这种结构,我们建立了质量中心过程,适当地重新调整,在分布上收敛于二维布朗运动。为了描述坍缩现象,我们讨论了谐波测度的极值行为和逃逸概率的基本问题。在$\mathbb {Z}^2$的n元子集中,调和测度的最小正值是多少?从集合中逃逸到距离d的概率是多少?对于前者,有大量的例子表明其调和测度在n上是指数小的。我们证明了它可以不小于在n \log n$上的指数。对于后者,逃逸概率最多是$\log d$的倒数,直到一个常数因子。我们证明它至少是这么多,直到一个n相关因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信