Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields

IF 1.2 2区 数学 Q1 MATHEMATICS
Gebhard Böckle, Ann-Kristin Juschka
{"title":"Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields","authors":"Gebhard Böckle, Ann-Kristin Juschka","doi":"10.1017/fms.2023.82","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>K</jats:italic> be a finite extension of the p-adic field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline1.png\" /> <jats:tex-math> ${\\mathbb {Q}}_p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of degree <jats:italic>d</jats:italic>, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline2.png\" /> <jats:tex-math> ${{\\mathbb {F}}\\,\\!{}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a finite field of characteristic <jats:italic>p</jats:italic> and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline3.png\" /> <jats:tex-math> ${\\overline {{D}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an <jats:italic>n</jats:italic>-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of <jats:italic>K</jats:italic> over the field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline4.png\" /> <jats:tex-math> ${{\\mathbb {F}}\\,\\!{}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. For the universal mod <jats:italic>p</jats:italic> pseudodeformation ring <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline5.png\" /> <jats:tex-math> ${\\overline {R}{{\\phantom {\\overline {\\overline m}}}}^{\\operatorname {univ}}_{{{\\overline {{D}}}}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline6.png\" /> <jats:tex-math> ${\\overline {{D}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove the following: The ring <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline7.png\" /> <jats:tex-math> $\\overline R_{{\\overline {{D}}}}^{\\mathrm {ps}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is equidimensional of dimension <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline8.png\" /> <jats:tex-math> $dn^2+1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Its reduced quotient <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline9.png\" /> <jats:tex-math> ${\\overline {R}{{\\phantom {\\overline {\\overline m}}}}^{\\operatorname {univ}}_{{{\\overline {{D}}},{\\operatorname {red}}}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> contains a dense open subset of regular points <jats:italic>x</jats:italic> whose associated pseudocharacter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline10.png\" /> <jats:tex-math> ${D}_x$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is absolutely irreducible and <jats:italic>nonspecial</jats:italic> in a certain technical sense that we shall define. Moreover, we will characterize in most cases when <jats:italic>K</jats:italic> does not contain a <jats:italic>p</jats:italic>-th root of unity the singular locus of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline11.png\" /> <jats:tex-math> ${\\mathrm {Spec}}\\ {\\overline {R}{{\\phantom {\\overline {\\overline m}}}}^{\\operatorname {univ}}_{{{\\overline {{D}}}}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline12.png\" /> <jats:tex-math> ${R{{\\phantom {\\overline {m}}}}^{\\operatorname {univ}}_{{{\\overline {D}}}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423000828_inline13.png\" /> <jats:tex-math> ${\\overline {{D}}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.82","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let K be a finite extension of the p-adic field ${\mathbb {Q}}_p$ of degree d, let ${{\mathbb {F}}\,\!{}}$ be a finite field of characteristic p and let ${\overline {{D}}}$ be an n-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of K over the field ${{\mathbb {F}}\,\!{}}$ . For the universal mod p pseudodeformation ring ${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$ of ${\overline {{D}}}$ , we prove the following: The ring $\overline R_{{\overline {{D}}}}^{\mathrm {ps}}$ is equidimensional of dimension $dn^2+1$ . Its reduced quotient ${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}},{\operatorname {red}}}}}$ contains a dense open subset of regular points x whose associated pseudocharacter ${D}_x$ is absolutely irreducible and nonspecial in a certain technical sense that we shall define. Moreover, we will characterize in most cases when K does not contain a p-th root of unity the singular locus of ${\mathrm {Spec}}\ {\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$ . Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring ${R{{\phantom {\overline {m}}}}^{\operatorname {univ}}_{{{\overline {D}}}}}$ of ${\overline {{D}}}$ .
p进场绝对伽罗瓦群特征p中的泛伪变形环的等维性
设K是阶为d的p进域${\mathbb {Q}}_p$的有限扩展,设${{\mathbb {F}}\,\!{}}$是一个具有特征p的有限域,设${\overline {{D}}}$是K的绝对伽罗瓦群在域${{\mathbb {F}}\,\!{}} $。对于${\overline {{D}} $的泛模p伪变形环${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{\overline {{D}}}}}}$,证明了$\overline R_{{\overline {{D}}}}^{\mathrm {ps}}$是维数$dn^2+1$的等维。它的约简商${\overline {R}{{\phantom {\overline {\overline {\overline m}}}}^{\operatorname {univ}}_{{\overline {{D}}}},{\operatorname {red}}}}}$包含正则点x的密集开放子集,其相关的伪字符${D}_x$在我们将定义的某种技术意义上是绝对不可约和非特殊的。此外,我们将在K不包含单位的p次根的大多数情况下描述${\ mathm {Spec}}\ {\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{\overline {D}}}}}}$的奇异轨迹。Chenevier对通用伪变形环${R{{\phantom {\overline {m}}}}^{\operatorname {univ}}_{{\overline {D}}}}}$ of ${\overline {{D}}}$证明了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信