Angelo Lucia, David Pérez-García, Antonio Pérez-Hernández
{"title":"Thermalization in Kitaev’s quantum double models via tensor network techniques","authors":"Angelo Lucia, David Pérez-García, Antonio Pérez-Hernández","doi":"10.1017/fms.2023.98","DOIUrl":null,"url":null,"abstract":"We show that every ergodic Davies generator associated to <jats:italic>any</jats:italic> 2D Kitaev’s quantum double model has a nonvanishing spectral gap in the thermodynamic limit. This validates rigorously the extended belief that those models are useless as self-correcting quantum memories, even in the non-abelian case. The proof uses recent ideas and results regarding the characterization of the spectral gap for parent Hamiltonians associated to Projected Entangled Pair States in terms of a bulk-boundary correspondence.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.98","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
Abstract
We show that every ergodic Davies generator associated to any 2D Kitaev’s quantum double model has a nonvanishing spectral gap in the thermodynamic limit. This validates rigorously the extended belief that those models are useless as self-correcting quantum memories, even in the non-abelian case. The proof uses recent ideas and results regarding the characterization of the spectral gap for parent Hamiltonians associated to Projected Entangled Pair States in terms of a bulk-boundary correspondence.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.