{"title":"On minimum spanning trees for random Euclidean bipartite graphs","authors":"Mario Correddu, Dario Trevisan","doi":"10.1017/s0963548323000445","DOIUrl":null,"url":null,"abstract":"We consider the minimum spanning tree problem on a weighted complete bipartite graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline1.png\" /> <jats:tex-math> $K_{n_R, n_B}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> whose <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline2.png\" /> <jats:tex-math> $n=n_R+n_B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices are random, i.i.d. uniformly distributed points in the unit cube in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline3.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> dimensions and edge weights are the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline4.png\" /> <jats:tex-math> $p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-th power of their Euclidean distance, with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline5.png\" /> <jats:tex-math> $p\\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the large <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline6.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> limit with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline7.png\" /> <jats:tex-math> $n_R/n \\to \\alpha _R$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline8.png\" /> <jats:tex-math> $0\\lt \\alpha _R\\lt 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we show that the maximum vertex degree of the tree grows logarithmically, in contrast with the classical, non-bipartite, case, where a uniform bound holds depending on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline9.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> only. Despite this difference, for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline10.png\" /> <jats:tex-math> $p\\lt d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we are able to prove that the total edge costs normalized by the rate <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548323000445_inline11.png\" /> <jats:tex-math> $n^{1-p/d}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> converge to a limiting constant that can be represented as a series of integrals, thus extending a classical result of Avram and Bertsimas to the bipartite case and confirming a conjecture of Riva, Caracciolo and Malatesta.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the minimum spanning tree problem on a weighted complete bipartite graph $K_{n_R, n_B}$ whose $n=n_R+n_B$ vertices are random, i.i.d. uniformly distributed points in the unit cube in $d$ dimensions and edge weights are the $p$ -th power of their Euclidean distance, with $p\gt 0$ . In the large $n$ limit with $n_R/n \to \alpha _R$ and $0\lt \alpha _R\lt 1$ , we show that the maximum vertex degree of the tree grows logarithmically, in contrast with the classical, non-bipartite, case, where a uniform bound holds depending on $d$ only. Despite this difference, for $p\lt d$ , we are able to prove that the total edge costs normalized by the rate $n^{1-p/d}$ converge to a limiting constant that can be represented as a series of integrals, thus extending a classical result of Avram and Bertsimas to the bipartite case and confirming a conjecture of Riva, Caracciolo and Malatesta.