{"title":"Spread-out limit of the critical points for lattice trees and lattice animals in dimensions","authors":"Noe Kawamoto, Akira Sakai","doi":"10.1017/s096354832300038x","DOIUrl":null,"url":null,"abstract":"A spread-out lattice animal is a finite connected set of edges in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline2.png\" /> <jats:tex-math>$\\{\\{x,y\\}\\subset \\mathbb{Z}^d\\;:\\;0\\lt \\|x-y\\|\\le L\\}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. A lattice tree is a lattice animal with no loops. The best estimate on the critical point <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline3.png\" /> <jats:tex-math>$p_{\\textrm{c}}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> so far was achieved by Penrose (<jats:italic>J. Stat. Phys.</jats:italic> 77, 3–15, 1994) : <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline4.png\" /> <jats:tex-math>$p_{\\textrm{c}}=1/e+O(L^{-2d/7}\\log L)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for both models for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline5.png\" /> <jats:tex-math>$d\\ge 1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline6.png\" /> <jats:tex-math>$p_{\\textrm{c}}=1/e+CL^{-d}+O(L^{-d-1})$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline7.png\" /> <jats:tex-math>$d\\gt 8$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where the model-dependent constant <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline8.png\" /> <jats:tex-math>$C$</jats:tex-math> </jats:alternatives> </jats:inline-formula> has the random-walk representation <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S096354832300038X_eqnU1.png\" /> <jats:tex-math>\\begin{align*} C_{\\textrm{LT}}=\\sum _{n=2}^\\infty \\frac{n+1}{2e}U^{*n}(o),&& C_{\\textrm{LA}}=C_{\\textrm{LT}}-\\frac 1{2e^2}\\sum _{n=3}^\\infty U^{*n}(o), \\end{align*}</jats:tex-math> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline9.png\" /> <jats:tex-math>$U^{*n}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline10.png\" /> <jats:tex-math>$n$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-fold convolution of the uniform distribution on the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline11.png\" /> <jats:tex-math>$d$</jats:tex-math> </jats:alternatives> </jats:inline-formula>-dimensional ball <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline12.png\" /> <jats:tex-math>$\\{x\\in{\\mathbb R}^d\\;: \\|x\\|\\le 1\\}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The proof is based on a novel use of the lace expansion for the 2-point function and detailed analysis of the 1-point function at a certain value of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S096354832300038X_inline13.png\" /> <jats:tex-math>$p$</jats:tex-math> </jats:alternatives> </jats:inline-formula> that is designed to make the analysis extremely simple.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s096354832300038x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A spread-out lattice animal is a finite connected set of edges in $\{\{x,y\}\subset \mathbb{Z}^d\;:\;0\lt \|x-y\|\le L\}$. A lattice tree is a lattice animal with no loops. The best estimate on the critical point $p_{\textrm{c}}$ so far was achieved by Penrose (J. Stat. Phys. 77, 3–15, 1994) : $p_{\textrm{c}}=1/e+O(L^{-2d/7}\log L)$ for both models for all $d\ge 1$. In this paper, we show that $p_{\textrm{c}}=1/e+CL^{-d}+O(L^{-d-1})$ for all $d\gt 8$, where the model-dependent constant $C$ has the random-walk representation \begin{align*} C_{\textrm{LT}}=\sum _{n=2}^\infty \frac{n+1}{2e}U^{*n}(o),&& C_{\textrm{LA}}=C_{\textrm{LT}}-\frac 1{2e^2}\sum _{n=3}^\infty U^{*n}(o), \end{align*}where $U^{*n}$ is the $n$-fold convolution of the uniform distribution on the $d$-dimensional ball $\{x\in{\mathbb R}^d\;: \|x\|\le 1\}$. The proof is based on a novel use of the lace expansion for the 2-point function and detailed analysis of the 1-point function at a certain value of $p$ that is designed to make the analysis extremely simple.