Saber Ibrahim, Ahmed M. Masoud, Mahmoud M. El-Maadawy, Hager Fahmy, Mohamed Taha
{"title":"Recycling waste polymer packaging materials as effective active carbon porous materials for uranium removal from commercial phosphoric acid","authors":"Saber Ibrahim, Ahmed M. Masoud, Mahmoud M. El-Maadawy, Hager Fahmy, Mohamed Taha","doi":"10.1515/ract-2023-0165","DOIUrl":null,"url":null,"abstract":"Plastic packaging waste is considered a serious threat to the environment due to its non-biodegradable nature. Transforming plastic waste into active carbons using pyrolysis methods could be a valuable option to solve the challenge of plastic waste. Synthesized active carbon was differentiated using zeta potential, particle size, SEM, BET, and DSC. This study also investigates the use of obtained active carbons for U(VI) removal from commercial phosphoric acid. The kinetics of adsorption were found to follow the pseudo-second-order model and intra-particle diffusion as one of the controlling mechanisms. Langmuir, and Freundlich, isotherms were employed to explore the equilibrium data. Furthermore, thermodynamic investigations revealed that uranium uptake is an endothermic, feasible, and spontaneous process. The present study concludes that plastic waste-based activated carbon could be employed as a low-cost alternative to commercial activated carbon for uranium removal from phosphoric acid and the production of green fertilizers.","PeriodicalId":21167,"journal":{"name":"Radiochimica Acta","volume":"18 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/ract-2023-0165","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Plastic packaging waste is considered a serious threat to the environment due to its non-biodegradable nature. Transforming plastic waste into active carbons using pyrolysis methods could be a valuable option to solve the challenge of plastic waste. Synthesized active carbon was differentiated using zeta potential, particle size, SEM, BET, and DSC. This study also investigates the use of obtained active carbons for U(VI) removal from commercial phosphoric acid. The kinetics of adsorption were found to follow the pseudo-second-order model and intra-particle diffusion as one of the controlling mechanisms. Langmuir, and Freundlich, isotherms were employed to explore the equilibrium data. Furthermore, thermodynamic investigations revealed that uranium uptake is an endothermic, feasible, and spontaneous process. The present study concludes that plastic waste-based activated carbon could be employed as a low-cost alternative to commercial activated carbon for uranium removal from phosphoric acid and the production of green fertilizers.