Supercritical site percolation on the hypercube: small components are small

Sahar Diskin, Michael Krivelevich
{"title":"Supercritical site percolation on the hypercube: small components are small","authors":"Sahar Diskin, Michael Krivelevich","doi":"10.1017/s0963548322000323","DOIUrl":null,"url":null,"abstract":"<p>We consider supercritical site percolation on the <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000323:S0963548322000323_inline1.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$d$\n</span></span>\n</span>\n</span>-dimensional hypercube <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000323:S0963548322000323_inline2.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$Q^d$\n</span></span>\n</span>\n</span>. We show that typically all components in the percolated hypercube, besides the giant, are of size <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S0963548322000323:S0963548322000323_inline3.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$O(d)$\n</span></span>\n</span>\n</span>. This resolves a conjecture of Bollobás, Kohayakawa, and Łuczak from 1994.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548322000323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider supercritical site percolation on the Abstract Image $d$ -dimensional hypercube Abstract Image $Q^d$ . We show that typically all components in the percolated hypercube, besides the giant, are of size Abstract Image $O(d)$ . This resolves a conjecture of Bollobás, Kohayakawa, and Łuczak from 1994.

超立方体上的超临界部位渗透:小组分小
我们考虑了d维超立方体Q^d上的超临界位置渗流。我们表明,在典型的渗透超立方体中,除了巨体外,所有组件的尺寸都是$O(d)$。这解决了1994年Bollobás、Kohayakawa和Łuczak的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信