On mappings on the hypercube with small average stretch

Lucas Boczkowski, Igor Shinkar
{"title":"On mappings on the hypercube with small average stretch","authors":"Lucas Boczkowski, Igor Shinkar","doi":"10.1017/s0963548322000281","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline1.png\" /><jats:tex-math> $A \\subseteq \\{0,1\\}^n$ </jats:tex-math></jats:alternatives></jats:inline-formula> be a set of size <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline2.png\" /><jats:tex-math> $2^{n-1}$ </jats:tex-math></jats:alternatives></jats:inline-formula>, and let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline3.png\" /><jats:tex-math> $\\phi \\,:\\, \\{0,1\\}^{n-1} \\to A$ </jats:tex-math></jats:alternatives></jats:inline-formula> be a bijection. We define <jats:italic>the average stretch</jats:italic> of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline4.png\" /><jats:tex-math> $\\phi$ </jats:tex-math></jats:alternatives></jats:inline-formula> as<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0963548322000281_eqnU1.png\" /><jats:tex-math> \\begin{equation*} {\\sf avgStretch}(\\phi ) = {\\mathbb E}[{{\\sf dist}}(\\phi (x),\\phi (x'))], \\end{equation*} </jats:tex-math></jats:alternatives></jats:disp-formula>where the expectation is taken over uniformly random <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline5.png\" /><jats:tex-math> $x,x' \\in \\{0,1\\}^{n-1}$ </jats:tex-math></jats:alternatives></jats:inline-formula> that differ in exactly one coordinate.In this paper, we continue the line of research studying mappings on the discrete hypercube with small average stretch. We prove the following results.<jats:list list-type=\"bullet\"><jats:list-item>For any set <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline6.png\" /><jats:tex-math> $A \\subseteq \\{0,1\\}^n$ </jats:tex-math></jats:alternatives></jats:inline-formula> of density <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline7.png\" /><jats:tex-math> $1/2$ </jats:tex-math></jats:alternatives></jats:inline-formula> there exists a bijection <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline8.png\" /><jats:tex-math> $\\phi _A \\,:\\, \\{0,1\\}^{n-1} \\to A$ </jats:tex-math></jats:alternatives></jats:inline-formula> such that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline9.png\" /><jats:tex-math> ${\\sf avgStretch}(\\phi _A) = O\\left(\\sqrt{n}\\right)$ </jats:tex-math></jats:alternatives></jats:inline-formula>.</jats:list-item><jats:list-item>For <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline10.png\" /><jats:tex-math> $n = 3^k$ </jats:tex-math></jats:alternatives></jats:inline-formula> let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline11.png\" /><jats:tex-math> ${A_{\\textsf{rec-maj}}} = \\{x \\in \\{0,1\\}^n \\,:\\,{\\textsf{rec-maj}}(x) = 1\\}$ </jats:tex-math></jats:alternatives></jats:inline-formula>, where <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline12.png\" /><jats:tex-math> ${\\textsf{rec-maj}} \\,:\\, \\{0,1\\}^n \\to \\{0,1\\}$ </jats:tex-math></jats:alternatives></jats:inline-formula> is the function <jats:italic>recursive majority of 3’s</jats:italic>. There exists a bijection <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline13.png\" /><jats:tex-math> $\\phi _{{\\textsf{rec-maj}}} \\,:\\, \\{0,1\\}^{n-1} \\to{A_{\\textsf{rec-maj}}}$ </jats:tex-math></jats:alternatives></jats:inline-formula> such that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline14.png\" /><jats:tex-math> ${\\sf avgStretch}(\\phi _{{\\textsf{rec-maj}}}) = O(1)$ </jats:tex-math></jats:alternatives></jats:inline-formula>.</jats:list-item><jats:list-item>Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline15.png\" /><jats:tex-math> ${A_{{\\sf tribes}}} = \\{x \\in \\{0,1\\}^n \\,:\\,{\\sf tribes}(x) = 1\\}$ </jats:tex-math></jats:alternatives></jats:inline-formula>. There exists a bijection <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline16.png\" /><jats:tex-math> $\\phi _{{\\sf tribes}} \\,:\\, \\{0,1\\}^{n-1} \\to{A_{{\\sf tribes}}}$ </jats:tex-math></jats:alternatives></jats:inline-formula> such that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000281_inline17.png\" /><jats:tex-math> ${\\sf avgStretch}(\\phi _{{\\sf tribes}}) = O(\\!\\log (n))$ </jats:tex-math></jats:alternatives></jats:inline-formula>.</jats:list-item></jats:list>These results answer the questions raised by Benjamini, Cohen, and Shinkar (Isr. J. Math 2016).","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548322000281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $A \subseteq \{0,1\}^n$ be a set of size $2^{n-1}$ , and let $\phi \,:\, \{0,1\}^{n-1} \to A$ be a bijection. We define the average stretch of $\phi$ as \begin{equation*} {\sf avgStretch}(\phi ) = {\mathbb E}[{{\sf dist}}(\phi (x),\phi (x'))], \end{equation*} where the expectation is taken over uniformly random $x,x' \in \{0,1\}^{n-1}$ that differ in exactly one coordinate.In this paper, we continue the line of research studying mappings on the discrete hypercube with small average stretch. We prove the following results.For any set $A \subseteq \{0,1\}^n$ of density $1/2$ there exists a bijection $\phi _A \,:\, \{0,1\}^{n-1} \to A$ such that ${\sf avgStretch}(\phi _A) = O\left(\sqrt{n}\right)$ .For $n = 3^k$ let ${A_{\textsf{rec-maj}}} = \{x \in \{0,1\}^n \,:\,{\textsf{rec-maj}}(x) = 1\}$ , where ${\textsf{rec-maj}} \,:\, \{0,1\}^n \to \{0,1\}$ is the function recursive majority of 3’s. There exists a bijection $\phi _{{\textsf{rec-maj}}} \,:\, \{0,1\}^{n-1} \to{A_{\textsf{rec-maj}}}$ such that ${\sf avgStretch}(\phi _{{\textsf{rec-maj}}}) = O(1)$ .Let ${A_{{\sf tribes}}} = \{x \in \{0,1\}^n \,:\,{\sf tribes}(x) = 1\}$ . There exists a bijection $\phi _{{\sf tribes}} \,:\, \{0,1\}^{n-1} \to{A_{{\sf tribes}}}$ such that ${\sf avgStretch}(\phi _{{\sf tribes}}) = O(\!\log (n))$ .These results answer the questions raised by Benjamini, Cohen, and Shinkar (Isr. J. Math 2016).
关于平均拉伸小的超立方体上的映射
让 $A \subseteq \{0,1\}^n$ 是一套尺寸 $2^{n-1}$ ,让 $\phi \,:\, \{0,1\}^{n-1} \to A$ 做个反对的人。我们定义的平均拉伸 $\phi$ as \begin{equation*} {\sf avgStretch}(\phi ) = {\mathbb E}[{{\sf dist}}(\phi (x),\phi (x'))], \end{equation*} 期望是均匀随机的 $x,x' \in \{0,1\}^{n-1}$ 只差一个坐标。本文继续研究具有小平均拉伸的离散超立方体上的映射。我们证明了以下结果。对于任意集合 $A \subseteq \{0,1\}^n$ 密度 $1/2$ 存在一种对立 $\phi _A \,:\, \{0,1\}^{n-1} \to A$ 这样 ${\sf avgStretch}(\phi _A) = O\left(\sqrt{n}\right)$ .为了 $n = 3^k$ 让 ${A_{\textsf{rec-maj}}} = \{x \in \{0,1\}^n \,:\,{\textsf{rec-maj}}(x) = 1\}$ ,其中 ${\textsf{rec-maj}} \,:\, \{0,1\}^n \to \{0,1\}$ 是函数的递归多数数为3。存在一种对立 $\phi _{{\textsf{rec-maj}}} \,:\, \{0,1\}^{n-1} \to{A_{\textsf{rec-maj}}}$ 这样 ${\sf avgStretch}(\phi _{{\textsf{rec-maj}}}) = O(1)$ .让 ${A_{{\sf tribes}}} = \{x \in \{0,1\}^n \,:\,{\sf tribes}(x) = 1\}$ . 存在一种对立 $\phi _{{\sf tribes}} \,:\, \{0,1\}^{n-1} \to{A_{{\sf tribes}}}$ 这样 ${\sf avgStretch}(\phi _{{\sf tribes}}) = O(\!\log (n))$ 这些结果回答了Benjamini, Cohen和Shinkar(以色列)提出的问题。J. Math 2016)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信