The bunkbed conjecture holds in the limit

Tom Hutchcroft, Alexander Kent, Petar Nizić-Nikolac
{"title":"The bunkbed conjecture holds in the limit","authors":"Tom Hutchcroft, Alexander Kent, Petar Nizić-Nikolac","doi":"10.1017/s096354832200027x","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline2.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G=(V,E)$\n</span></span>\n</span>\n</span> be a countable graph. The Bunkbed graph of <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline3.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G$\n</span></span>\n</span>\n</span> is the product graph <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline4.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G \\times K_2$\n</span></span>\n</span>\n</span>, which has vertex set <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline5.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$V\\times \\{0,1\\}$\n</span></span>\n</span>\n</span> with “horizontal” edges inherited from <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline6.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G$\n</span></span>\n</span>\n</span> and additional “vertical” edges connecting <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline7.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$(w,0)$\n</span></span>\n</span>\n</span> and <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline8.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$(w,1)$\n</span></span>\n</span>\n</span> for each <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline9.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$w \\in V$\n</span></span>\n</span>\n</span>. Kasteleyn’s Bunkbed conjecture states that for each <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline10.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$u,v \\in V$\n</span></span>\n</span>\n</span> and <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline11.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$p\\in [0,1]$\n</span></span>\n</span>\n</span>, the vertex <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline12.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$(u,0)$\n</span></span>\n</span>\n</span> is at least as likely to be connected to <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline13.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$(v,0)$\n</span></span>\n</span>\n</span> as to <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline14.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$(v,1)$\n</span></span>\n</span>\n</span> under Bernoulli-<span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline15.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$p$\n</span></span>\n</span>\n</span> bond percolation on the bunkbed graph. We prove that the conjecture holds in the <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline16.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$p \\uparrow 1$\n</span></span>\n</span>\n</span> limit in the sense that for each finite graph <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline17.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$G$\n</span></span>\n</span>\n</span> there exists <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline18.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$\\varepsilon (G)\\gt 0$\n</span></span>\n</span>\n</span> such that the bunkbed conjecture holds for <span>\n<span>\n<img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20230406132554462-0824:S096354832200027X:S096354832200027X_inline19.png\"/>\n<span data-mathjax-type=\"texmath\"><span>\n$p \\geqslant 1-\\varepsilon (G)$\n</span></span>\n</span>\n</span>.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s096354832200027x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let Abstract Image $G=(V,E)$ be a countable graph. The Bunkbed graph of Abstract Image $G$ is the product graph Abstract Image $G \times K_2$ , which has vertex set Abstract Image $V\times \{0,1\}$ with “horizontal” edges inherited from Abstract Image $G$ and additional “vertical” edges connecting Abstract Image $(w,0)$ and Abstract Image $(w,1)$ for each Abstract Image $w \in V$ . Kasteleyn’s Bunkbed conjecture states that for each Abstract Image $u,v \in V$ and Abstract Image $p\in [0,1]$ , the vertex Abstract Image $(u,0)$ is at least as likely to be connected to Abstract Image $(v,0)$ as to Abstract Image $(v,1)$ under Bernoulli- Abstract Image $p$ bond percolation on the bunkbed graph. We prove that the conjecture holds in the Abstract Image $p \uparrow 1$ limit in the sense that for each finite graph Abstract Image $G$ there exists Abstract Image $\varepsilon (G)\gt 0$ such that the bunkbed conjecture holds for Abstract Image $p \geqslant 1-\varepsilon (G)$ .

双层猜想在极限下成立
让 $G=(V,E)$ 是一个可数图。的双层图 $G$ 是乘积图 $G \times K_2$,它有顶点集 $V\times \{0,1\}$ 的“水平”边缘 $G$ 和额外的“垂直”边连接 $(w,0)$ 和 $(w,1)$ 对于每一个 $w \in V$. Kasteleyn的双层床猜想指出,对于每一个 $u,v \in V$ 和 $p\in [0,1]$,顶点 $(u,0)$ 至少有可能被连接到 $(v,0)$ 至于 $(v,1)$ 在伯努利下$p$ 双层图上的键渗透。我们证明了这个猜想在 $p \uparrow 1$ 极限是指对于每一个有限图 $G$ 存在 $\varepsilon (G)\gt 0$ 这样一来,床铺猜想就成立了 $p \geqslant 1-\varepsilon (G)$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信