{"title":"Effect of matrix dislocation strengthening on deformation-induced martensitic transformation behavior of metastable high-entropy alloys","authors":"Kenta Yamanaka, Manami Mori, Daishin Yokosuka, Kazuo Yoshida, Yusuke Onuki, Shigeo Sato, Akihiko Chiba","doi":"10.1080/21663831.2023.2281593","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the influence of dislocation strengthening in the metastable parent phase on the deformation-induced martensitic transformation behavior of a face-centered cubic (fcc)...This paper firstly uncovers the role and significance of matrix dislocation strengthening on the mechanical behavior of metastable high-entropy alloys via in-situ neutron diffraction experiments.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"56 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21663831.2023.2281593","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigate the influence of dislocation strengthening in the metastable parent phase on the deformation-induced martensitic transformation behavior of a face-centered cubic (fcc)...This paper firstly uncovers the role and significance of matrix dislocation strengthening on the mechanical behavior of metastable high-entropy alloys via in-situ neutron diffraction experiments.
期刊介绍:
Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.