On the formation and growth of grain boundary κ-carbides in austenitic high-Mn lightweight steels

IF 8.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohamed N. Elkot, Binhan Sun, Xuyang Zhou, Dirk Ponge, Dierk Raabe
{"title":"On the formation and growth of grain boundary κ-carbides in austenitic high-Mn lightweight steels","authors":"Mohamed N. Elkot, Binhan Sun, Xuyang Zhou, Dirk Ponge, Dierk Raabe","doi":"10.1080/21663831.2023.2284321","DOIUrl":null,"url":null,"abstract":"The precipitation of grain boundary (GB) κ-carbides critically influences the damage-tolerance ability of high-Mn high-Al lightweight steels, particularly in harsh environments (cryogenic and H env...We originally report that grain boundary κ-carbides can result from spinodal decomposition rather than conventional heterogeneous nucleation and refute the possibility of avoiding their precipitati...","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"81 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21663831.2023.2284321","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The precipitation of grain boundary (GB) κ-carbides critically influences the damage-tolerance ability of high-Mn high-Al lightweight steels, particularly in harsh environments (cryogenic and H env...We originally report that grain boundary κ-carbides can result from spinodal decomposition rather than conventional heterogeneous nucleation and refute the possibility of avoiding their precipitati...
奥氏体高锰轻钢中晶界κ-碳化物的形成与生长
晶界(GB) κ-碳化物的析出严重影响高锰高铝轻钢的损伤容忍能力,特别是在恶劣环境(低温和高温环境)中。我们最初报道了晶界碳化物可能是由独立分解而不是传统的非均相成核产生的,并反驳了避免其析出的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Letters
Materials Research Letters Materials Science-General Materials Science
CiteScore
12.10
自引率
3.60%
发文量
98
审稿时长
3.3 months
期刊介绍: Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信