Invertibility and Spectrum of the Riemann Boundary Value Problem Operator in a Countably Normed Space of Smooth Functions on a Circle

IF 0.5 Q3 MATHEMATICS
A. E. Pasenchuk
{"title":"Invertibility and Spectrum of the Riemann Boundary Value Problem Operator in a Countably Normed Space of Smooth Functions on a Circle","authors":"A. E. Pasenchuk","doi":"10.3103/s1066369x2308008x","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"39 1","pages":"36 - 43"},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x2308008x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
圆上光滑函数可数赋范空间中Riemann边值问题算子的可逆性和谱
在单位圆上光滑函数的可数赋范空间中,考虑具有光滑系数的Riemann边值问题算子。介绍了单位圆上光滑的正负函数的光滑退化分解的概念。给出了这种分解存在的判据。提出了一种用系数来计算这些因数分解指标的装置。利用光滑退化分解,得到了黎曼边值问题算子可逆性的判据。这允许描述这个算子的频谱。给出了相同系数的光滑函数和可求和函数空间中黎曼算子谱的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信