{"title":"Upgrading interferometric scattering microscopy with ensemble statistical analysis","authors":"Minsu Lee, Seok-Cheol Hong, Minhaeng Cho","doi":"10.1002/bkcs.12800","DOIUrl":null,"url":null,"abstract":"<p>Interferometric scattering (iSCAT) microscopy, label-free high-speed (up to ~1000 frames per second) imaging and tracking technique, has proven to be a versatile tool by measuring the mass and 3D position of nanoparticles and biomolecules as well as visualizing real-time dynamics of nanoscale events in complex cellular environments. However, the quantification of iSCAT signals has not been straightforwardly defined in practical terms. We delve into several issues associated with signal processing in iSCAT: error-prone post-processing routine and lack of statistical reliability in the convention of iSCAT contrast. After providing a brief account of concepts and principles of correlation spectroscopy, we here discuss an alternative ensemble (higher number density of scatterers) statistical analysis that can be used to extract the dynamic information of scattering particles from fluctuating iSCAT signals. Finally, our perspective on the correlation approach toward time-correlated iSCAT technique will be presented.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"45 1","pages":"32-44"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.12800","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Interferometric scattering (iSCAT) microscopy, label-free high-speed (up to ~1000 frames per second) imaging and tracking technique, has proven to be a versatile tool by measuring the mass and 3D position of nanoparticles and biomolecules as well as visualizing real-time dynamics of nanoscale events in complex cellular environments. However, the quantification of iSCAT signals has not been straightforwardly defined in practical terms. We delve into several issues associated with signal processing in iSCAT: error-prone post-processing routine and lack of statistical reliability in the convention of iSCAT contrast. After providing a brief account of concepts and principles of correlation spectroscopy, we here discuss an alternative ensemble (higher number density of scatterers) statistical analysis that can be used to extract the dynamic information of scattering particles from fluctuating iSCAT signals. Finally, our perspective on the correlation approach toward time-correlated iSCAT technique will be presented.
期刊介绍:
The Bulletin of the Korean Chemical Society is an official research journal of the Korean Chemical Society. It was founded in 1980 and reaches out to the chemical community worldwide. It is strictly peer-reviewed and welcomes Accounts, Communications, Articles, and Notes written in English. The scope of the journal covers all major areas of chemistry: analytical chemistry, electrochemistry, industrial chemistry, inorganic chemistry, life-science chemistry, macromolecular chemistry, organic synthesis, non-synthetic organic chemistry, physical chemistry, and materials chemistry.