{"title":"Color tuning halide perovskites: Optical amplification and lasing","authors":"Shuai Feng, Blake Povilus, Sui Yang","doi":"10.1016/j.mtadv.2023.100431","DOIUrl":null,"url":null,"abstract":"<p>Light emission with delicate wavelength control generates fundamental colors that are essential for vision-based applications such as displays, information communication, visual and augmented reality. Yet these light emitting technologies critically rely on the development of photonic sources for proper lighting and color matching. Halide perovskites have recently emerged as excellent and efficient photonic sources due to their outstanding photophysical properties, such as low defect trap densities, long carrier lifetime, large absorption coefficient, high quantum yield and optical gain. On a par with the rapid advances of light-emitting diodes (LEDs), perovskite-based optical amplifiers and lasers have made great strides in the past few years, which have much more accurate control of color-matched lighting, high power, spatial and wavevector control of color emission. In this review, we aim to review the recent progress of perovskite lasers at micro-, nano- and subwavelength scales, discuss the properties of halide perovskites and optical cavity structures that benefit color light emission, and examine the remaining challenges in the field for the future development of perovskite-based lasing technologies.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"12 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2023.100431","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Light emission with delicate wavelength control generates fundamental colors that are essential for vision-based applications such as displays, information communication, visual and augmented reality. Yet these light emitting technologies critically rely on the development of photonic sources for proper lighting and color matching. Halide perovskites have recently emerged as excellent and efficient photonic sources due to their outstanding photophysical properties, such as low defect trap densities, long carrier lifetime, large absorption coefficient, high quantum yield and optical gain. On a par with the rapid advances of light-emitting diodes (LEDs), perovskite-based optical amplifiers and lasers have made great strides in the past few years, which have much more accurate control of color-matched lighting, high power, spatial and wavevector control of color emission. In this review, we aim to review the recent progress of perovskite lasers at micro-, nano- and subwavelength scales, discuss the properties of halide perovskites and optical cavity structures that benefit color light emission, and examine the remaining challenges in the field for the future development of perovskite-based lasing technologies.
期刊介绍:
Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.