Ziyi Tang, Zhenyu Wan, Han Cao, Yize Liang, Wei Zhou, Yuchen Zhang, Liang Fang, Jian Wang
{"title":"Fiber-based broadband detection of a rotational object with superposed vortices","authors":"Ziyi Tang, Zhenyu Wan, Han Cao, Yize Liang, Wei Zhou, Yuchen Zhang, Liang Fang, Jian Wang","doi":"10.1063/5.0167478","DOIUrl":null,"url":null,"abstract":"Recently, the rotational Doppler effect has attracted broad attention in detecting rotational motion. However, the presently proposed detection techniques based on the rotational Doppler effect are generally configured relying on discrete components in free space, resulting in cumbersome and inflexible systems, which brings challenges to practical applications. In this paper, we demonstrate a fiber-based configuration on rotational Doppler measurements for the detection of a rotational object using an ultra-broadband mode-selective coupler to convert the superposed vortices. Remarkably, the results show the broadband operating range of the fiber-based measurement system intuitively through wavelength scanning. The refinement of rotational Doppler detection techniques is of great significance for lowering the cost, reducing system complexity, improving system integration, and industrial manufacturing. This fiber-based scheme might be a promising candidate for facilitating the rotational Doppler effect applied as novel motion monitoring and sensing equipment in engineering and industry.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"141 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0167478","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the rotational Doppler effect has attracted broad attention in detecting rotational motion. However, the presently proposed detection techniques based on the rotational Doppler effect are generally configured relying on discrete components in free space, resulting in cumbersome and inflexible systems, which brings challenges to practical applications. In this paper, we demonstrate a fiber-based configuration on rotational Doppler measurements for the detection of a rotational object using an ultra-broadband mode-selective coupler to convert the superposed vortices. Remarkably, the results show the broadband operating range of the fiber-based measurement system intuitively through wavelength scanning. The refinement of rotational Doppler detection techniques is of great significance for lowering the cost, reducing system complexity, improving system integration, and industrial manufacturing. This fiber-based scheme might be a promising candidate for facilitating the rotational Doppler effect applied as novel motion monitoring and sensing equipment in engineering and industry.
APL PhotonicsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍:
APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.