Notion of Explainable Artificial Intelligence -- An Empirical Investigation from A Users Perspective

AKM Bahalul Haque, A. K. M. Najmul Islam, Patrick Mikalef
{"title":"Notion of Explainable Artificial Intelligence -- An Empirical Investigation from A Users Perspective","authors":"AKM Bahalul Haque, A. K. M. Najmul Islam, Patrick Mikalef","doi":"arxiv-2311.02102","DOIUrl":null,"url":null,"abstract":"The growing attention to artificial intelligence-based applications has led\nto research interest in explainability issues. This emerging research attention\non explainable AI (XAI) advocates the need to investigate end user-centric\nexplainable AI. Thus, this study aims to investigate usercentric explainable AI\nand considered recommendation systems as the study context. We conducted focus\ngroup interviews to collect qualitative data on the recommendation system. We\nasked participants about the end users' comprehension of a recommended item,\nits probable explanation, and their opinion of making a recommendation\nexplainable. Our findings reveal that end users want a non-technical and\ntailor-made explanation with on-demand supplementary information. Moreover, we\nalso observed users requiring an explanation about personal data usage,\ndetailed user feedback, and authentic and reliable explanations. Finally, we\npropose a synthesized framework that aims at involving the end user in the\ndevelopment process for requirements collection and validation.","PeriodicalId":501310,"journal":{"name":"arXiv - CS - Other Computer Science","volume":"2023 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Other Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.02102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growing attention to artificial intelligence-based applications has led to research interest in explainability issues. This emerging research attention on explainable AI (XAI) advocates the need to investigate end user-centric explainable AI. Thus, this study aims to investigate usercentric explainable AI and considered recommendation systems as the study context. We conducted focus group interviews to collect qualitative data on the recommendation system. We asked participants about the end users' comprehension of a recommended item, its probable explanation, and their opinion of making a recommendation explainable. Our findings reveal that end users want a non-technical and tailor-made explanation with on-demand supplementary information. Moreover, we also observed users requiring an explanation about personal data usage, detailed user feedback, and authentic and reliable explanations. Finally, we propose a synthesized framework that aims at involving the end user in the development process for requirements collection and validation.
可解释人工智能的概念——基于用户视角的实证研究
对基于人工智能的应用的日益关注导致了对可解释性问题的研究兴趣。这种新兴的研究关注可解释人工智能(XAI)提倡研究以最终用户为中心的可解释人工智能的必要性。因此,本研究旨在研究以用户为中心的可解释ai,并将推荐系统作为研究背景。我们进行了焦点小组访谈,以收集推荐系统的定性数据。我们向参与者询问了终端用户对推荐项目的理解程度、可能的解释以及他们对可解释性推荐的看法。我们的研究结果表明,最终用户需要一个非技术的、量身定制的、随需应变的补充信息解释。此外,我们还观察到用户要求解释个人数据的使用情况,详细的用户反馈,真实可靠的解释。最后,我们提出了一个综合框架,旨在将最终用户纳入需求收集和验证的开发过程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信