Solving the multiplication problem of a large language model system using a graph-based method

Turker Tuncer, Sengul Dogan, Mehmet Baygin, Prabal Datta Barua, Abdul Hafeez-Baig, Ru-San Tan, Subrata Chakraborty, U. Rajendra Acharya
{"title":"Solving the multiplication problem of a large language model system using a graph-based method","authors":"Turker Tuncer, Sengul Dogan, Mehmet Baygin, Prabal Datta Barua, Abdul Hafeez-Baig, Ru-San Tan, Subrata Chakraborty, U. Rajendra Acharya","doi":"arxiv-2310.13016","DOIUrl":null,"url":null,"abstract":"The generative pre-trained transformer (GPT)-based chatbot software ChatGPT\npossesses excellent natural language processing capabilities but is inadequate\nfor solving arithmetic problems, especially multiplication. Its GPT structure\nuses a computational graph for multiplication, which has limited accuracy\nbeyond simple multiplication operations. We developed a graph-based\nmultiplication algorithm that emulated human-like numerical operations by\nincorporating a 10k operator, where k represents the maximum power to base 10\nof the larger of two input numbers. Our proposed algorithm attained 100%\naccuracy for 1,000,000 large number multiplication tasks, effectively solving\nthe multiplication challenge of GPT-based and other large language models. Our\nwork highlights the importance of blending simple human insights into the\ndesign of artificial intelligence algorithms. Keywords: Graph-based\nmultiplication; ChatGPT; Multiplication problem","PeriodicalId":501310,"journal":{"name":"arXiv - CS - Other Computer Science","volume":"48 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Other Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.13016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The generative pre-trained transformer (GPT)-based chatbot software ChatGPT possesses excellent natural language processing capabilities but is inadequate for solving arithmetic problems, especially multiplication. Its GPT structure uses a computational graph for multiplication, which has limited accuracy beyond simple multiplication operations. We developed a graph-based multiplication algorithm that emulated human-like numerical operations by incorporating a 10k operator, where k represents the maximum power to base 10 of the larger of two input numbers. Our proposed algorithm attained 100% accuracy for 1,000,000 large number multiplication tasks, effectively solving the multiplication challenge of GPT-based and other large language models. Our work highlights the importance of blending simple human insights into the design of artificial intelligence algorithms. Keywords: Graph-based multiplication; ChatGPT; Multiplication problem
用基于图的方法求解大型语言模型系统的乘法问题
基于生成式预训练转换器(GPT)的聊天机器人软件chatgpt具有出色的自然语言处理能力,但在求解算术问题,尤其是乘法问题方面存在不足。它的GPT结构使用计算图进行乘法运算,除了简单的乘法运算之外,它的精度有限。我们开发了一种基于图的乘法算法,通过结合10k运算符来模拟类似人类的数值运算,其中k表示两个输入数字中较大的以10为基数的最大功率。我们提出的算法在1,000,000个大数乘法任务中达到100%的准确率,有效地解决了基于gpt和其他大型语言模型的乘法挑战。我们的工作强调了将简单的人类见解融入人工智能算法设计的重要性。关键词:Graph-basedmultiplication;ChatGPT;乘法问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信