求助PDF
{"title":"P/N/Si-containing synergistic flame retardants endowing lignin-based epoxy resin with good flame retardancy, mechanical properties and heat resistance","authors":"Jialan Li, Jinlei Wang, Huimin Zheng, Jianwei Guo, Ruijie Guo, Hong Yan","doi":"10.1002/pi.6595","DOIUrl":null,"url":null,"abstract":"<p>Biobased epoxy resins are gaining attention as a renewable alternative to petroleum-based resins. However, their inherent flammability requires flame-retardant treatment. In this study, hexaphenoxycyclotriphosphazene (HPCP) and various synergists were utilized to improve the flame retardancy of lignin-based epoxy resin (EP-L). Results showed that (3-aminopropyl)triethoxysilane (APTES) had the most effective synergistic effect for HPCP to form a P/N/Si-containing system, resulting in a compact crosslinked char layer. Upon the incorporation of HPCP and APTES (6∶1, 12 wt% of EP mass) into EP, a V-0 classification was achieved in the UL-94 vertical burning assessment, with a limiting oxygen index of 33.6% and a 47.77% decrease in the peak of heat release rate. This system minimally influenced the tensile strength of the composite (a 16.51% reduction), and maximumly increased its initial degradation temperature by 83 °C, compared with EP-L. © 2023 Society of Industrial Chemistry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6595","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
Biobased epoxy resins are gaining attention as a renewable alternative to petroleum-based resins. However, their inherent flammability requires flame-retardant treatment. In this study, hexaphenoxycyclotriphosphazene (HPCP) and various synergists were utilized to improve the flame retardancy of lignin-based epoxy resin (EP-L). Results showed that (3-aminopropyl)triethoxysilane (APTES) had the most effective synergistic effect for HPCP to form a P/N/Si-containing system, resulting in a compact crosslinked char layer. Upon the incorporation of HPCP and APTES (6∶1, 12 wt% of EP mass) into EP, a V-0 classification was achieved in the UL-94 vertical burning assessment, with a limiting oxygen index of 33.6% and a 47.77% decrease in the peak of heat release rate. This system minimally influenced the tensile strength of the composite (a 16.51% reduction), and maximumly increased its initial degradation temperature by 83 °C, compared with EP-L. © 2023 Society of Industrial Chemistry.
含P/N/ si的协同阻燃剂使木质素基环氧树脂具有良好的阻燃性、机械性能和耐热性
生物基环氧树脂作为石油基树脂的可再生替代品,正受到越来越多的关注。然而,其固有的可燃性需要阻燃处理。本研究利用六苯氧环三磷腈(HPCP)和多种增效剂来改善木质素基环氧树脂(EP-L)的阻燃性。结果表明,(3-氨基丙基)三乙氧基硅烷(APTES)对HPCP具有最有效的协同作用,可形成P/N/ si的体系,形成致密的交联炭层。在EP中加入HPCP和APTES (EP质量的6∶1,12 wt%)后,UL-94垂直燃烧评价达到V-0级,极限氧指数为33.6%,放热率峰值降低47.77%。与EP-L相比,该体系对复合材料抗拉强度的影响最小(降低了16.51%),最大限度地提高了复合材料的初始降解温度83℃。©2023工业化学学会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。