A Faster Exponential Time Algorithm for Bin Packing With a Constant Number of Bins via Additive Combinatorics

IF 1.2 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Jesper Nederlof, Jakub Pawlewicz, Céline M. F. Swennenhuis, Karol Węgrzycki
{"title":"A Faster Exponential Time Algorithm for Bin Packing With a Constant Number of Bins via Additive Combinatorics","authors":"Jesper Nederlof, Jakub Pawlewicz, Céline M. F. Swennenhuis, Karol Węgrzycki","doi":"10.1137/22m1478112","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Computing, Volume 52, Issue 6, Page 1369-1412, December 2023. <br/> Abstract. In the Bin Packing problem one is given [math] items with weights [math] and [math] bins with capacities [math]. The goal is to partition the items into sets [math] such that [math] for every bin [math], where [math] denotes [math]. Björklund, Husfeldt, and Koivisto [SIAM J. Comput., 39 (2009), pp. 546–563] presented an [math] time algorithm for Bin Packing (the [math] notation omits factors polynomial in the input size). In this paper, we show that for every [math] there exists a constant [math] such that an instance of Bin Packing with [math] bins can be solved in [math] randomized time. Before our work, such improved algorithms were not known even for [math]. A key step in our approach is the following new result in Littlewood–Offord theory on the additive combinatorics of subset sums: For every [math] there exists an [math] such that if [math] for some [math], then [math].","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"42 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1137/22m1478112","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Computing, Volume 52, Issue 6, Page 1369-1412, December 2023.
Abstract. In the Bin Packing problem one is given [math] items with weights [math] and [math] bins with capacities [math]. The goal is to partition the items into sets [math] such that [math] for every bin [math], where [math] denotes [math]. Björklund, Husfeldt, and Koivisto [SIAM J. Comput., 39 (2009), pp. 546–563] presented an [math] time algorithm for Bin Packing (the [math] notation omits factors polynomial in the input size). In this paper, we show that for every [math] there exists a constant [math] such that an instance of Bin Packing with [math] bins can be solved in [math] randomized time. Before our work, such improved algorithms were not known even for [math]. A key step in our approach is the following new result in Littlewood–Offord theory on the additive combinatorics of subset sums: For every [math] there exists an [math] such that if [math] for some [math], then [math].
基于可加组合的常箱数装箱的快速指数时间算法
SIAM Journal on Computing, vol . 52, Issue 6, Page 1369-1412, December 2023。摘要。在装箱问题中,给定[math]重量为[math]的物品和[math]容量为[math]的箱子。目标是将项目划分为集合[math],使得[math]对应每个箱子[math],其中[math]表示[math]。Björklund,胡思德,Koivisto [SIAM J. computer]。[j], 39 (2009), pp. 546-563]提出了一种Bin Packing的[math]时间算法([math]符号省略了输入大小中的多项式因子)。在本文中,我们证明了对于每个[math]存在一个常数[math],使得具有[math]个箱子的Bin Packing实例可以在[math]随机时间内求解。在我们的工作之前,这种改进的算法甚至在[数学]中都不为人所知。我们方法的关键一步是在littlewood - offford理论中关于子集和的加性组合的以下新结果:对于每一个[math]存在一个[math],如果[math]对于某些[math],则[math]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Computing
SIAM Journal on Computing 工程技术-计算机:理论方法
CiteScore
4.60
自引率
0.00%
发文量
68
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信