Robin problems for elliptic equations with singular drifts on Lipschitz domains

IF 1 3区 数学 Q1 MATHEMATICS
Wenxian Ma, Sibei Yang
{"title":"Robin problems for elliptic equations with singular drifts on Lipschitz domains","authors":"Wenxian Ma,&nbsp;Sibei Yang","doi":"10.1007/s10231-023-01399-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(n\\ge 2\\)</span> and <span>\\(\\Omega \\subset \\mathbb {R}^n\\)</span> be a bounded Lipschitz domain. Assume that <span>\\(\\textbf{b}\\in L^{n*}(\\Omega ;\\mathbb {R}^n)\\)</span> and <span>\\(\\gamma \\)</span> is a non-negative function on <span>\\(\\partial \\Omega \\)</span> satisfying some mild assumptions, where <span>\\(n^*:=n\\)</span> when <span>\\(n\\ge 3\\)</span> and <span>\\(n^*\\in (2,\\infty )\\)</span> when <span>\\(n=2\\)</span>. In this article, we establish the unique solvability of the Robin problems </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{aligned} -\\Delta u+\\textrm{div}(u\\textbf{b})&amp;=f{} &amp; {} \\text {in}\\ \\ \\Omega , \\\\ \\left( \\nabla u-u\\textbf{b}\\right) \\cdot \\varvec{\\nu }+\\gamma u&amp;=u_R{} &amp; {} \\text {on}\\ \\ \\partial \\Omega \\end{aligned}\\right. \\end{aligned}$$</span></div></div><p>and </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{aligned} -\\Delta v-\\textbf{b}\\cdot \\nabla v&amp;=g{} &amp; {} \\text {in}\\ \\ \\Omega , \\\\ \\nabla v\\cdot \\varvec{\\nu }+\\gamma v&amp;=v_R{} &amp; {} \\text {on}\\ \\ \\partial \\Omega \\end{aligned}\\right. \\end{aligned}$$</span></div></div><p>in the Bessel potential space <span>\\(L^p_\\alpha (\\Omega )\\)</span>, where <span>\\(\\alpha \\in (0,2)\\)</span> and <span>\\(p\\in (1,\\infty )\\)</span> satisfy some restraint conditions, and <span>\\(\\varvec{\\nu }\\)</span> denotes the outward unit normal to the boundary <span>\\(\\partial \\Omega \\)</span>. The results obtained in this article extend the corresponding results established by Kim and Kwon (Trans Am Math Soc 375:6537–6574, 2022) for the Dirichlet and the Neumann problems to the case of the Robin problem.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01399-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(n\ge 2\) and \(\Omega \subset \mathbb {R}^n\) be a bounded Lipschitz domain. Assume that \(\textbf{b}\in L^{n*}(\Omega ;\mathbb {R}^n)\) and \(\gamma \) is a non-negative function on \(\partial \Omega \) satisfying some mild assumptions, where \(n^*:=n\) when \(n\ge 3\) and \(n^*\in (2,\infty )\) when \(n=2\). In this article, we establish the unique solvability of the Robin problems

$$\begin{aligned} \left\{ \begin{aligned} -\Delta u+\textrm{div}(u\textbf{b})&=f{} & {} \text {in}\ \ \Omega , \\ \left( \nabla u-u\textbf{b}\right) \cdot \varvec{\nu }+\gamma u&=u_R{} & {} \text {on}\ \ \partial \Omega \end{aligned}\right. \end{aligned}$$

and

$$\begin{aligned} \left\{ \begin{aligned} -\Delta v-\textbf{b}\cdot \nabla v&=g{} & {} \text {in}\ \ \Omega , \\ \nabla v\cdot \varvec{\nu }+\gamma v&=v_R{} & {} \text {on}\ \ \partial \Omega \end{aligned}\right. \end{aligned}$$

in the Bessel potential space \(L^p_\alpha (\Omega )\), where \(\alpha \in (0,2)\) and \(p\in (1,\infty )\) satisfy some restraint conditions, and \(\varvec{\nu }\) denotes the outward unit normal to the boundary \(\partial \Omega \). The results obtained in this article extend the corresponding results established by Kim and Kwon (Trans Am Math Soc 375:6537–6574, 2022) for the Dirichlet and the Neumann problems to the case of the Robin problem.

Abstract Image

Lipschitz区域上奇异漂移椭圆方程的Robin问题
设\(n\ge 2\)和\(\Omega \subset \mathbb {R}^n\)为有界Lipschitz域。假设\(\textbf{b}\in L^{n*}(\Omega ;\mathbb {R}^n)\)和\(\gamma \)是\(\partial \Omega \)的非负函数,满足一些温和的假设,其中\(n^*:=n\)等于\(n\ge 3\), \(n^*\in (2,\infty )\)等于\(n=2\)。本文在贝塞尔势空间\(L^p_\alpha (\Omega )\)中建立了Robin问题$$\begin{aligned} \left\{ \begin{aligned} -\Delta u+\textrm{div}(u\textbf{b})&=f{} & {} \text {in}\ \ \Omega , \\ \left( \nabla u-u\textbf{b}\right) \cdot \varvec{\nu }+\gamma u&=u_R{} & {} \text {on}\ \ \partial \Omega \end{aligned}\right. \end{aligned}$$和$$\begin{aligned} \left\{ \begin{aligned} -\Delta v-\textbf{b}\cdot \nabla v&=g{} & {} \text {in}\ \ \Omega , \\ \nabla v\cdot \varvec{\nu }+\gamma v&=v_R{} & {} \text {on}\ \ \partial \Omega \end{aligned}\right. \end{aligned}$$的唯一可解性,其中\(\alpha \in (0,2)\)和\(p\in (1,\infty )\)满足一定的约束条件,\(\varvec{\nu }\)表示向边界\(\partial \Omega \)法向的向外单位。本文所得结果将Kim和Kwon (Trans Am Math Soc 375:6537-6574, 2022)关于Dirichlet和Neumann问题的相应结果推广到Robin问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信