N2 and Ar dilution on the premixed biogas jet flame under external acoustic enforcement

IF 5.4 2区 工程技术 Q1 ENGINEERING, AEROSPACE
Buğrahan Alabaş, İlker Yılmaz, Yakup Çam
{"title":"N2 and Ar dilution on the premixed biogas jet flame under external acoustic enforcement","authors":"Buğrahan Alabaş, İlker Yılmaz, Yakup Çam","doi":"10.1016/j.jppr.2023.09.001","DOIUrl":null,"url":null,"abstract":"<p>In this study, combustion instabilities and flue gas emission changes under different dilutions of N<sub>2</sub> (nitrogen) and Ar (argon) of a promising biogas mixture (70% CH<sub>4</sub> - 30% CO<sub>2</sub>) in the fight against greenhouse gas emissions were investigated. In the experiments, additions were made from 0% to 50% at intervals of 10% for both gases. In order to detect the instability of the flame, external acoustic enforcements at different frequencies was applied through the speakers placed in the combustion chamber arms. The dynamic pressure fluctuation values were recorded. The results showed that low dilution ratios were effective in reducing flame instability for both inert gases. However, as the dilution ratio increased, the fuel/air mixture became leaner and blowoff occurred. In the case of comparing two different gases, it has been observed that the effect of argon gas on reducing dynamic pressure fluctuation is higher. Burner outlet temperature and brightness values of the flame decreased in both Ar and N<sub>2</sub> dilution. CO and NO<sub>x</sub> emissions increased with increasing diluent volume for all dilution conditions. When the emissions of the two diluent gases are compared, the CO emission, which was 3134 ppm in the undiluted condition, increased up to 4949 ppm in 50% Ar dilution, while it increased to 4521 ppm in 50% N<sub>2</sub> dilution.</p>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"36 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jppr.2023.09.001","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, combustion instabilities and flue gas emission changes under different dilutions of N2 (nitrogen) and Ar (argon) of a promising biogas mixture (70% CH4 - 30% CO2) in the fight against greenhouse gas emissions were investigated. In the experiments, additions were made from 0% to 50% at intervals of 10% for both gases. In order to detect the instability of the flame, external acoustic enforcements at different frequencies was applied through the speakers placed in the combustion chamber arms. The dynamic pressure fluctuation values were recorded. The results showed that low dilution ratios were effective in reducing flame instability for both inert gases. However, as the dilution ratio increased, the fuel/air mixture became leaner and blowoff occurred. In the case of comparing two different gases, it has been observed that the effect of argon gas on reducing dynamic pressure fluctuation is higher. Burner outlet temperature and brightness values of the flame decreased in both Ar and N2 dilution. CO and NOx emissions increased with increasing diluent volume for all dilution conditions. When the emissions of the two diluent gases are compared, the CO emission, which was 3134 ppm in the undiluted condition, increased up to 4949 ppm in 50% Ar dilution, while it increased to 4521 ppm in 50% N2 dilution.

外声作用下N2和Ar对预混沼气射流火焰的稀释作用
在这项研究中,研究了在不同浓度的N2(氮)和Ar(氩)下,一种有前途的沼气混合物(70% CH4 - 30% CO2)的燃烧不稳定性和烟气排放变化。在实验中,两种气体以10%的间隔从0%添加到50%。为了检测火焰的不稳定性,通过放置在燃烧室臂中的扬声器施加不同频率的外部声学强制。记录动态压力波动值。结果表明,低稀释比能有效降低两种惰性气体的火焰不稳定性。然而,随着稀释比的增加,燃料/空气混合物变得稀薄,并发生爆炸。在比较两种不同气体的情况下,观察到氩气对减小动压波动的作用更大。氩气和氮气稀释后,燃烧器出口温度和火焰亮度降低。在所有稀释条件下,CO和NOx排放量随稀释剂体积的增加而增加。对比两种稀释气体的排放量,在未稀释条件下,CO排放量为3134 ppm,在50% Ar稀释条件下增加到4949 ppm,而在50% N2稀释条件下增加到4521 ppm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
5.70%
发文量
30
期刊介绍: Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信