An enhanced binarization framework for degraded historical document images

IF 2.4 4区 计算机科学
Wei Xiong, Lei Zhou, Ling Yue, Lirong Li, Song Wang
{"title":"An enhanced binarization framework for degraded historical document images","authors":"Wei Xiong, Lei Zhou, Ling Yue, Lirong Li, Song Wang","doi":"10.1186/s13640-021-00556-4","DOIUrl":null,"url":null,"abstract":"<p>Binarization plays an important role in <i>document analysis and recognition</i> (DAR) systems. In this paper, we present our winning algorithm in ICFHR 2018 <i>competition on handwritten document image binarization</i> (H-DIBCO 2018), which is based on background estimation and energy minimization. First, we adopt mathematical morphological operations to estimate and compensate the document background. It uses a disk-shaped structuring element, whose radius is computed by the minimum entropy-based <i>stroke width transform</i> (SWT). Second, we perform Laplacian energy-based segmentation on the compensated document images. Finally, we implement post-processing to preserve text stroke connectivity and eliminate isolated noise. Experimental results indicate that the proposed method outperforms other state-of-the-art techniques on several public available benchmark datasets.</p>","PeriodicalId":49322,"journal":{"name":"Eurasip Journal on Image and Video Processing","volume":"65 ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Image and Video Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13640-021-00556-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Binarization plays an important role in document analysis and recognition (DAR) systems. In this paper, we present our winning algorithm in ICFHR 2018 competition on handwritten document image binarization (H-DIBCO 2018), which is based on background estimation and energy minimization. First, we adopt mathematical morphological operations to estimate and compensate the document background. It uses a disk-shaped structuring element, whose radius is computed by the minimum entropy-based stroke width transform (SWT). Second, we perform Laplacian energy-based segmentation on the compensated document images. Finally, we implement post-processing to preserve text stroke connectivity and eliminate isolated noise. Experimental results indicate that the proposed method outperforms other state-of-the-art techniques on several public available benchmark datasets.

退化历史文档图像的增强二值化框架
二值化在文档分析与识别(DAR)系统中起着重要作用。在本文中,我们提出了基于背景估计和能量最小化的ICFHR 2018手写文档图像二值化(H-DIBCO 2018)竞赛的获奖算法。首先,我们采用数学形态学运算对文档背景进行估计和补偿。它使用一个圆盘形状的结构元素,其半径由基于最小熵的笔画宽度变换(SWT)计算。其次,对补偿后的文档图像进行拉普拉斯能量分割。最后,我们实现了后处理,以保持文本笔画的连通性和消除孤立的噪声。实验结果表明,该方法在几个公开可用的基准数据集上优于其他最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Eurasip Journal on Image and Video Processing
Eurasip Journal on Image and Video Processing Engineering-Electrical and Electronic Engineering
CiteScore
7.10
自引率
0.00%
发文量
23
审稿时长
6.8 months
期刊介绍: EURASIP Journal on Image and Video Processing is intended for researchers from both academia and industry, who are active in the multidisciplinary field of image and video processing. The scope of the journal covers all theoretical and practical aspects of the domain, from basic research to development of application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信