{"title":"Multi-orientation local ternary pattern-based feature extraction for forensic dentistry","authors":"Karunya Rajmohan, Askarunisa Abdul Khader","doi":"10.1186/s13640-022-00584-8","DOIUrl":null,"url":null,"abstract":"<p>Accurate and automated identification of the deceased victims with dental radiographs plays a significant role in forensic dentistry. The image processing techniques such as segmentation and feature extraction play a crucial role in image retrieval in accordance with the matching image. The raw image undergoes segmentation, feature extraction and distance-based image retrieval. The ultimate goal of the proposed work is the automated quality enhancement of the image by providing advanced enhancement techniques, segmentation techniques, feature extraction, and matching techniques. In this paper, multi-orientation local ternary pattern-based feature extraction is proposed for feature extraction. The grey level difference method (GLDM) is adopted to extract the texture and shape features that are considered for better results. The image retrieval is done by the computation of similarity score using distances such as Manhattan, Euclidean, vector cosine angle, and histogram intersection distance to obtain the optimal match from the database. The manually picked dataset of 200 images is considered for performance analysis. By extracting both the shape features and texture features, the proposed approach achieved maximum accuracy, precision, recall, F-measure, sensitivity, and specificity and lower false-positive and negative values.</p>","PeriodicalId":49322,"journal":{"name":"Eurasip Journal on Image and Video Processing","volume":"21 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Image and Video Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13640-022-00584-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate and automated identification of the deceased victims with dental radiographs plays a significant role in forensic dentistry. The image processing techniques such as segmentation and feature extraction play a crucial role in image retrieval in accordance with the matching image. The raw image undergoes segmentation, feature extraction and distance-based image retrieval. The ultimate goal of the proposed work is the automated quality enhancement of the image by providing advanced enhancement techniques, segmentation techniques, feature extraction, and matching techniques. In this paper, multi-orientation local ternary pattern-based feature extraction is proposed for feature extraction. The grey level difference method (GLDM) is adopted to extract the texture and shape features that are considered for better results. The image retrieval is done by the computation of similarity score using distances such as Manhattan, Euclidean, vector cosine angle, and histogram intersection distance to obtain the optimal match from the database. The manually picked dataset of 200 images is considered for performance analysis. By extracting both the shape features and texture features, the proposed approach achieved maximum accuracy, precision, recall, F-measure, sensitivity, and specificity and lower false-positive and negative values.
期刊介绍:
EURASIP Journal on Image and Video Processing is intended for researchers from both academia and industry, who are active in the multidisciplinary field of image and video processing. The scope of the journal covers all theoretical and practical aspects of the domain, from basic research to development of application.