Heterogeneous graph attention networks for passage retrieval

IF 1.7 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lucas Albarede, Philippe Mulhem, Lorraine Goeuriot, Sylvain Marié, Claude Le Pape-Gardeux, Trinidad Chardin-Segui
{"title":"Heterogeneous graph attention networks for passage retrieval","authors":"Lucas Albarede, Philippe Mulhem, Lorraine Goeuriot, Sylvain Marié, Claude Le Pape-Gardeux, Trinidad Chardin-Segui","doi":"10.1007/s10791-023-09424-3","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an exploration of the usage of Heterogeneous Graph Attention Networks, or HGATs, for the task of Passage Retrieval. More precisely, we study how these models perform to alleviate the problem of passage contextualization, that is incorporating information about the context of a passage (its containing document, neighbouring passages, etc.) in its relevance estimation. We first propose several configurations to compute contextualized passage representations, including a document graph representation composed of contextualizing signals and judiciously modified HGAT architectures. We then present how we integrate these configurations in a neural passage ranking model. We evaluate our approach on a Passage Retrieval task on patent documents: CLEF-IP2013, as these documents possess several different contextualizing signals fully exploited in our models. Our results show that some HGAT architecture modifications allow for a better context representation leading to improved performances and stability.</p>","PeriodicalId":54352,"journal":{"name":"Information Retrieval Journal","volume":"102 ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Retrieval Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10791-023-09424-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an exploration of the usage of Heterogeneous Graph Attention Networks, or HGATs, for the task of Passage Retrieval. More precisely, we study how these models perform to alleviate the problem of passage contextualization, that is incorporating information about the context of a passage (its containing document, neighbouring passages, etc.) in its relevance estimation. We first propose several configurations to compute contextualized passage representations, including a document graph representation composed of contextualizing signals and judiciously modified HGAT architectures. We then present how we integrate these configurations in a neural passage ranking model. We evaluate our approach on a Passage Retrieval task on patent documents: CLEF-IP2013, as these documents possess several different contextualizing signals fully exploited in our models. Our results show that some HGAT architecture modifications allow for a better context representation leading to improved performances and stability.

Abstract Image

文章检索的异构图注意网络
本文提出了使用异构图注意网络(HGATs)来完成文章检索任务的探索。更准确地说,我们研究了这些模型如何缓解段落语境化的问题,即在相关性估计中纳入关于段落上下文的信息(其包含的文档,邻近的段落等)。我们首先提出了几种计算上下文化通道表示的配置,包括由上下文化信号和明智修改的HGAT架构组成的文档图表示。然后,我们介绍了如何将这些配置整合到神经通道排序模型中。我们在专利文档的段落检索任务中评估了我们的方法:CLEF-IP2013,因为这些文档具有几种不同的上下文化信号,这些信号在我们的模型中得到了充分利用。我们的结果表明,一些HGAT架构修改允许更好的上下文表示,从而提高了性能和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Retrieval Journal
Information Retrieval Journal 工程技术-计算机:信息系统
CiteScore
6.20
自引率
0.00%
发文量
17
审稿时长
13.5 months
期刊介绍: The journal provides an international forum for the publication of theory, algorithms, analysis and experiments across the broad area of information retrieval. Topics of interest include search, indexing, analysis, and evaluation for applications such as the web, social and streaming media, recommender systems, and text archives. This includes research on human factors in search, bridging artificial intelligence and information retrieval, and domain-specific search applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信