{"title":"Service Design to Balance Waiting Time and Infection Risk: An Application for Elections During the COVID-19 Pandemic","authors":"Susana Mondschein,Marcelo Olivares,Fernando Ordóñez,Daniel Schwartz,Andres Weintraub,Ignacio Torres-Ulloa,Cristian Aguayo,Gianpiero Canessa","doi":"10.1287/serv.2021.0290","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has caused great disruption to the service sector, and it has, in turn, adapted by implementing measures that reduce physical contact among employees and users; examples include home-office work and the setting of occupancy restrictions at indoor locations. The design of services in the context of a pandemic requires balancing between two objectives: (i) special measures must be implemented to maintain physical separation among people to reduce the risk of infection, and (ii) these sanitary measures also reduce process capacity, thereby increasing the waiting times of users. We study this problem in the context of election processes, in which balancing waiting time with public safety is of first order relevance to ensuring voter turnout, using as a real-world application the Chilean 2020 national referendum. Analyzing this problem requires a multidisciplinary approach that consists of integrating randomized experiments to measure how voters weigh infection risk relative to waiting time and stochastic modeling/discrete event simulation to prescribe recommendations for the service design—specifically setting capacity limits to trade off between overcrowding and process efficiency. Overall, our results shows that infection risk is an important factor affecting voter turnout during a pandemic and that capacity limits can be a useful design tool to balance these risks with other service quality measures. Some of these findings were considered in the guidelines that Servel provided to manage capacity and voter arrival patterns at voting centers.","PeriodicalId":46249,"journal":{"name":"Service Science","volume":"4 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Service Science","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/serv.2021.0290","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic has caused great disruption to the service sector, and it has, in turn, adapted by implementing measures that reduce physical contact among employees and users; examples include home-office work and the setting of occupancy restrictions at indoor locations. The design of services in the context of a pandemic requires balancing between two objectives: (i) special measures must be implemented to maintain physical separation among people to reduce the risk of infection, and (ii) these sanitary measures also reduce process capacity, thereby increasing the waiting times of users. We study this problem in the context of election processes, in which balancing waiting time with public safety is of first order relevance to ensuring voter turnout, using as a real-world application the Chilean 2020 national referendum. Analyzing this problem requires a multidisciplinary approach that consists of integrating randomized experiments to measure how voters weigh infection risk relative to waiting time and stochastic modeling/discrete event simulation to prescribe recommendations for the service design—specifically setting capacity limits to trade off between overcrowding and process efficiency. Overall, our results shows that infection risk is an important factor affecting voter turnout during a pandemic and that capacity limits can be a useful design tool to balance these risks with other service quality measures. Some of these findings were considered in the guidelines that Servel provided to manage capacity and voter arrival patterns at voting centers.
期刊介绍:
Service Science publishes innovative and original papers on all topics related to service, including work that crosses traditional disciplinary boundaries. It is the primary forum for presenting new theories and new empirical results in the emerging, interdisciplinary science of service, incorporating research, education, and practice, documenting empirical, modeling, and theoretical studies of service and service systems. Topics covered include but are not limited to the following: Service Management, Operations, Engineering, Economics, Design, and Marketing Service System Analysis and Computational Simulation Service Theories and Research Methods Case Studies and Application Areas, such as healthcare, energy, finance, information technology, logistics, and public services.