{"title":"Synthesis of bismuth-doped praseodymium ortho ferrite nanomaterials for LPG sensing","authors":"Keval Bharati, Prabhat Ranjan Tiwari, Rahul Pratap Singh, Ajeet Singh, Bal Chandra Yadav, Manish Pratap Singh, Santosh Kumar","doi":"10.1007/s13204-023-02976-2","DOIUrl":null,"url":null,"abstract":"<div><p>Liquefied petroleum gas (LPG) is used as fuel for cooking, heating, and transportation globally. This gas is highly inflammable, poisonous, explosive, and hazardous, and it creates several health issues when inhaled. Thus, its leakage detection is of the utmost importance. There are several sensors used for LPG detection, but they have a high operating temperature; therefore, developing sensors that work at normal temperatures has always been a challenge. This paper describes the synthesis of bismuth (Bi)-doped Praseodymium orthoferrite (PrFeO<sub>3</sub>) nanomaterials by the sol–gel self-combustion technique and their application in LPG detection. The synthesized nanomaterials were characterized using powder X-ray diffraction (PXRD), field emission scanning electron microscope (FESEM), Brunauer–Emmett–Teller (BET), ultraviolet–visible spectroscopy (UV–Vis), and Fourier transform infrared spectroscopy (FTIR). PXRD reveals that the synthesized nanomaterial has an orthorhombic structure with the Pbnm space group, and the crystallite size (D) changes from 30 to 41 nm. FESEM was used for the analysis of surface morphology. BET analysis reveals the mesoporous nature of synthesized nanomaterials with a 16.331 to 37.645 m<sup>2</sup>g<sup>−1</sup> specific surface area. UV–Vis spectroscopy affirms the optical energy band gap lying between 2.27 and 1.95 eV. The FTIR study represents the existence of different functional groups and their lattice vibration. Synthesized nanomaterials were explored as an LPG detector working at room temperature for the first time. Different sensing parameters have been evaluated. The gas sensing studies reveal that the response and recovery times are 15.3 and 22.4 s for 0.5 vol% of LPG, and the sensor shows high selectivity towards LPG. This study reveals that the designed sensor is capable of working at room temperature, and the synthesized nanomaterials are promising for LPG sensing.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 2","pages":"277 - 289"},"PeriodicalIF":3.6740,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-023-02976-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Liquefied petroleum gas (LPG) is used as fuel for cooking, heating, and transportation globally. This gas is highly inflammable, poisonous, explosive, and hazardous, and it creates several health issues when inhaled. Thus, its leakage detection is of the utmost importance. There are several sensors used for LPG detection, but they have a high operating temperature; therefore, developing sensors that work at normal temperatures has always been a challenge. This paper describes the synthesis of bismuth (Bi)-doped Praseodymium orthoferrite (PrFeO3) nanomaterials by the sol–gel self-combustion technique and their application in LPG detection. The synthesized nanomaterials were characterized using powder X-ray diffraction (PXRD), field emission scanning electron microscope (FESEM), Brunauer–Emmett–Teller (BET), ultraviolet–visible spectroscopy (UV–Vis), and Fourier transform infrared spectroscopy (FTIR). PXRD reveals that the synthesized nanomaterial has an orthorhombic structure with the Pbnm space group, and the crystallite size (D) changes from 30 to 41 nm. FESEM was used for the analysis of surface morphology. BET analysis reveals the mesoporous nature of synthesized nanomaterials with a 16.331 to 37.645 m2g−1 specific surface area. UV–Vis spectroscopy affirms the optical energy band gap lying between 2.27 and 1.95 eV. The FTIR study represents the existence of different functional groups and their lattice vibration. Synthesized nanomaterials were explored as an LPG detector working at room temperature for the first time. Different sensing parameters have been evaluated. The gas sensing studies reveal that the response and recovery times are 15.3 and 22.4 s for 0.5 vol% of LPG, and the sensor shows high selectivity towards LPG. This study reveals that the designed sensor is capable of working at room temperature, and the synthesized nanomaterials are promising for LPG sensing.
期刊介绍:
Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.