Johannes Hulsman, Xin Wu, Philipp Azzarello, Benedikt Bergmann, Michael Campbell, George Clark, Franck Cadoux, Tomoya Ilzawa, Peter Kollmann, Xavi Llopart, Quentin Nénon, Mercedes Paniccia, Elias Roussos, Petr Smolyanskiy, Daniil Sukhonos, Pierre Alexandre Thonet
{"title":"Relativistic particle measurement in jupiter’s magnetosphere with Pix.PAN","authors":"Johannes Hulsman, Xin Wu, Philipp Azzarello, Benedikt Bergmann, Michael Campbell, George Clark, Franck Cadoux, Tomoya Ilzawa, Peter Kollmann, Xavi Llopart, Quentin Nénon, Mercedes Paniccia, Elias Roussos, Petr Smolyanskiy, Daniil Sukhonos, Pierre Alexandre Thonet","doi":"10.1007/s10686-023-09918-4","DOIUrl":null,"url":null,"abstract":"<div><p>Pix.PAN is a compact cylindrical magnetic spectrometer, intended to provide excellent high energy particle measurements under high rate and hostile operating conditions in space. Its principal design is composed of two Halbach-array magnetic sectors and six Timepix4-based tracking layers; the latest hybrid silicon pixel detector readout ASIC designed. Due to Pix.PAN’s compact and relatively simple design, it has the potential to be used for space missions exploring with measurements of unprecedented precision, high energy particles in radiation belts and the heliophere (solar energetic particles, anomalous and galactic cosmic rays). In this white paper, we discuss the design and expected performance of Pix.PAN for COMPASS (<b>C</b>omprehensive <b>O</b>bservations of <b>M</b>agnetospheric <b>P</b>article <b>A</b>cceleration, <b>S</b>ources, and <b>S</b>inks), a mission concept submitted to NASA’s Call “B.16 Heliophysics Mission Concept Studies (HMCS)” in 2021 that targets the extreme high energy particle environment of Jupiter’s inner radiation belts. We also discuss PixPAN’s operational conditions and interface requirements. The conceptual design shows that is possible to achieve an energy resolution of<12% for electrons in the range of 10 MeV-1 GeV and<35% for protons between <span>\\(\\sim \\)</span>200 MeV to a few GeV. Due to the timestamp precision of Timepix4, a time resolution (on an instrument level) of about 100 ps can be achieved for time-of-flight measurements. In the most intense radiation environments of the COMPASS mission, Pix.PAN is expected to have a maximum hit rate of 44<span>\\(\\frac{\\text {MHz}}{\\text {cm}^2}\\)</span> which is below the design limit of 360<span>\\(\\frac{\\text {MHz}}{\\text {cm}^2}\\)</span> of Timepix4. Finally, a sensor design is proposed which allows the instrument to operate with a power budget of 20W without the loss of scientific performance.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 2-3","pages":"371 - 402"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-023-09918-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-023-09918-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Pix.PAN is a compact cylindrical magnetic spectrometer, intended to provide excellent high energy particle measurements under high rate and hostile operating conditions in space. Its principal design is composed of two Halbach-array magnetic sectors and six Timepix4-based tracking layers; the latest hybrid silicon pixel detector readout ASIC designed. Due to Pix.PAN’s compact and relatively simple design, it has the potential to be used for space missions exploring with measurements of unprecedented precision, high energy particles in radiation belts and the heliophere (solar energetic particles, anomalous and galactic cosmic rays). In this white paper, we discuss the design and expected performance of Pix.PAN for COMPASS (Comprehensive Observations of Magnetospheric Particle Acceleration, Sources, and Sinks), a mission concept submitted to NASA’s Call “B.16 Heliophysics Mission Concept Studies (HMCS)” in 2021 that targets the extreme high energy particle environment of Jupiter’s inner radiation belts. We also discuss PixPAN’s operational conditions and interface requirements. The conceptual design shows that is possible to achieve an energy resolution of<12% for electrons in the range of 10 MeV-1 GeV and<35% for protons between \(\sim \)200 MeV to a few GeV. Due to the timestamp precision of Timepix4, a time resolution (on an instrument level) of about 100 ps can be achieved for time-of-flight measurements. In the most intense radiation environments of the COMPASS mission, Pix.PAN is expected to have a maximum hit rate of 44\(\frac{\text {MHz}}{\text {cm}^2}\) which is below the design limit of 360\(\frac{\text {MHz}}{\text {cm}^2}\) of Timepix4. Finally, a sensor design is proposed which allows the instrument to operate with a power budget of 20W without the loss of scientific performance.
Pix。PAN是一种紧凑的圆柱形磁谱仪,旨在在高速率和恶劣的空间操作条件下提供出色的高能粒子测量。其主要设计由两个哈尔巴赫阵列磁扇区和六个基于timepix4的跟踪层组成;最新设计的混合硅像素检测器读出专用集成电路。由于Pix。PAN的紧凑和相对简单的设计,它有潜力用于空间任务,探索前所未有的精度,辐射带和日球层的高能粒子(太阳高能粒子,异常和银河宇宙射线)。在本白皮书中,我们讨论了Pix的设计和预期性能。PAN for COMPASS(磁层粒子加速、源和汇的综合观测),这是一个提交给NASA B.16的任务概念太阳物理任务概念研究(HMCS)”,目标是木星内部辐射带的极端高能粒子环境。讨论了PixPAN的运行条件和接口要求。概念设计表明,可以实现12的能量分辨率% for electrons in the range of 10 MeV-1 GeV and<35% for protons between \(\sim \)200 MeV to a few GeV. Due to the timestamp precision of Timepix4, a time resolution (on an instrument level) of about 100 ps can be achieved for time-of-flight measurements. In the most intense radiation environments of the COMPASS mission, Pix.PAN is expected to have a maximum hit rate of 44\(\frac{\text {MHz}}{\text {cm}^2}\) which is below the design limit of 360\(\frac{\text {MHz}}{\text {cm}^2}\) of Timepix4. Finally, a sensor design is proposed which allows the instrument to operate with a power budget of 20W without the loss of scientific performance.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.