Construction of metal-organic framework/cellulose nanofibers-based hybrid membranes and their ion transport property for efficient osmotic energy conversion

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Wenkai Fu , Jiajian Zhang , Qi Zhang , Mehraj Ahmad , Zhe Sun , Zhouyue Li , Yuxuan Zhu , Yuyang Zhou , Sha Wang
{"title":"Construction of metal-organic framework/cellulose nanofibers-based hybrid membranes and their ion transport property for efficient osmotic energy conversion","authors":"Wenkai Fu ,&nbsp;Jiajian Zhang ,&nbsp;Qi Zhang ,&nbsp;Mehraj Ahmad ,&nbsp;Zhe Sun ,&nbsp;Zhouyue Li ,&nbsp;Yuxuan Zhu ,&nbsp;Yuyang Zhou ,&nbsp;Sha Wang","doi":"10.1016/j.ijbiomac.2023.128546","DOIUrl":null,"url":null,"abstract":"<div><p><span>The development of advanced nanofluidic membranes with better ion selectivity, efficient energy conversion and high output power density remains challenging. Herein, we prepared nanofluidic hybrid membranes based on TEMPO oxidized cellulose nanofibers (T-CNF) and manganese-based metal organic framework (MOF) using a simple </span><em>in situ</em><span> synthesis method. Incorporated T-CNF endows the MOF/T-CNF hybrid membrane with a high cation selectivity up to 0.93. Nanoporous MOF in three-dimensional interconnected nanochannels provides massive ion transport<span> pathways. High transmembrane ion flux and low ion permeation energy barrier are correlated with a superior energy conversion efficiency (36 %) in MOF/T-CNF hybrid membrane. When operating under 50-fold salinity gradient by mixing simulated seawater and river water, the MOF/T-CNF hybrid membrane achieves a maximum power density value of 1.87 W m</span></span><sup>−2</sup>. About 5-fold increase in output power density was achieved compared to pure T-CNF membrane. The integration of natural nanofibers with high charge density and nanoporous MOF materials is demonstrated an effective and novel strategy for the enhancement of output power density of nanofluidic membranes, showing the great potential of MOF/T-CNF hybrid membranes as efficient nanofluidic osmotic energy generators.</p></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"257 ","pages":"Article 128546"},"PeriodicalIF":7.7000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813023054454","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of advanced nanofluidic membranes with better ion selectivity, efficient energy conversion and high output power density remains challenging. Herein, we prepared nanofluidic hybrid membranes based on TEMPO oxidized cellulose nanofibers (T-CNF) and manganese-based metal organic framework (MOF) using a simple in situ synthesis method. Incorporated T-CNF endows the MOF/T-CNF hybrid membrane with a high cation selectivity up to 0.93. Nanoporous MOF in three-dimensional interconnected nanochannels provides massive ion transport pathways. High transmembrane ion flux and low ion permeation energy barrier are correlated with a superior energy conversion efficiency (36 %) in MOF/T-CNF hybrid membrane. When operating under 50-fold salinity gradient by mixing simulated seawater and river water, the MOF/T-CNF hybrid membrane achieves a maximum power density value of 1.87 W m−2. About 5-fold increase in output power density was achieved compared to pure T-CNF membrane. The integration of natural nanofibers with high charge density and nanoporous MOF materials is demonstrated an effective and novel strategy for the enhancement of output power density of nanofluidic membranes, showing the great potential of MOF/T-CNF hybrid membranes as efficient nanofluidic osmotic energy generators.

金属-有机骨架/纤维素纳米纤维基杂化膜的构建及其高效渗透能转换的离子传输性能
开发具有更好的离子选择性、高效的能量转换和高输出功率密度的先进纳米流体膜仍然是一个挑战。本文采用原位合成的方法制备了基于TEMPO氧化纤维素纳米纤维(T-CNF)和锰基金属有机骨架(MOF)的纳米流控杂化膜。加入T-CNF后,MOF/CNF杂化膜的阳离子选择性高达0.93。三维互联纳米通道中的纳米多孔MOF提供了大量离子传输途径。MOF/T-CNF混合膜具有较高的跨膜离子通量和较低的离子渗透能垒,具有较高的能量转换效率(36% %)。当模拟海水与河水混合在50倍盐度梯度下工作时,MOF/T-CNF复合膜的最大功率密度值为1.87 W·m−2。与纯T-CNF膜相比,输出功率密度增加了约5倍。将具有高电荷密度的天然纳米纤维与纳米多孔MOF材料相结合是提高纳米流控膜输出功率密度的一种有效的新策略,显示了MOF/T-CNF混合膜作为高效纳米流控渗透能发生器的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
文献相关原料
公司名称
产品信息
阿拉丁
trimesic acid
阿拉丁
polyvinylpyrrolidone
阿拉丁
Manganese acetate tetrahydrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信