Construction of metal-organic framework/cellulose nanofibers-based hybrid membranes and their ion transport property for efficient osmotic energy conversion
Wenkai Fu , Jiajian Zhang , Qi Zhang , Mehraj Ahmad , Zhe Sun , Zhouyue Li , Yuxuan Zhu , Yuyang Zhou , Sha Wang
{"title":"Construction of metal-organic framework/cellulose nanofibers-based hybrid membranes and their ion transport property for efficient osmotic energy conversion","authors":"Wenkai Fu , Jiajian Zhang , Qi Zhang , Mehraj Ahmad , Zhe Sun , Zhouyue Li , Yuxuan Zhu , Yuyang Zhou , Sha Wang","doi":"10.1016/j.ijbiomac.2023.128546","DOIUrl":null,"url":null,"abstract":"<div><p><span>The development of advanced nanofluidic membranes with better ion selectivity, efficient energy conversion and high output power density remains challenging. Herein, we prepared nanofluidic hybrid membranes based on TEMPO oxidized cellulose nanofibers (T-CNF) and manganese-based metal organic framework (MOF) using a simple </span><em>in situ</em><span> synthesis method. Incorporated T-CNF endows the MOF/T-CNF hybrid membrane with a high cation selectivity up to 0.93. Nanoporous MOF in three-dimensional interconnected nanochannels provides massive ion transport<span> pathways. High transmembrane ion flux and low ion permeation energy barrier are correlated with a superior energy conversion efficiency (36 %) in MOF/T-CNF hybrid membrane. When operating under 50-fold salinity gradient by mixing simulated seawater and river water, the MOF/T-CNF hybrid membrane achieves a maximum power density value of 1.87 W m</span></span><sup>−2</sup>. About 5-fold increase in output power density was achieved compared to pure T-CNF membrane. The integration of natural nanofibers with high charge density and nanoporous MOF materials is demonstrated an effective and novel strategy for the enhancement of output power density of nanofluidic membranes, showing the great potential of MOF/T-CNF hybrid membranes as efficient nanofluidic osmotic energy generators.</p></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"257 ","pages":"Article 128546"},"PeriodicalIF":7.7000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813023054454","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of advanced nanofluidic membranes with better ion selectivity, efficient energy conversion and high output power density remains challenging. Herein, we prepared nanofluidic hybrid membranes based on TEMPO oxidized cellulose nanofibers (T-CNF) and manganese-based metal organic framework (MOF) using a simple in situ synthesis method. Incorporated T-CNF endows the MOF/T-CNF hybrid membrane with a high cation selectivity up to 0.93. Nanoporous MOF in three-dimensional interconnected nanochannels provides massive ion transport pathways. High transmembrane ion flux and low ion permeation energy barrier are correlated with a superior energy conversion efficiency (36 %) in MOF/T-CNF hybrid membrane. When operating under 50-fold salinity gradient by mixing simulated seawater and river water, the MOF/T-CNF hybrid membrane achieves a maximum power density value of 1.87 W m−2. About 5-fold increase in output power density was achieved compared to pure T-CNF membrane. The integration of natural nanofibers with high charge density and nanoporous MOF materials is demonstrated an effective and novel strategy for the enhancement of output power density of nanofluidic membranes, showing the great potential of MOF/T-CNF hybrid membranes as efficient nanofluidic osmotic energy generators.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.