{"title":"Some notes on the algebraic structure of linear recurrent sequences","authors":"Gessica Alecci, Stefano Barbero, Nadir Murru","doi":"10.1007/s11587-023-00826-5","DOIUrl":null,"url":null,"abstract":"<p>Several operations can be defined on the set of all linear recurrent sequences, such as the binomial convolution (Hurwitz product) or the multinomial convolution (Newton product). Using elementary techniques, we prove that this set equipped with the termwise sum and the aforementioned products is an <i>R</i>-algebra, given any commutative ring <i>R</i> with identity. Moreover, we provide explicitly a characteristic polynomial of the Hurwitz product and Newton product of any two linear recurrent sequences. Finally, we also investigate whether these <i>R</i>-algebras are isomorphic, considering also the <i>R</i>-algebras obtained using the Hadamard product and the convolution product.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-023-00826-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Several operations can be defined on the set of all linear recurrent sequences, such as the binomial convolution (Hurwitz product) or the multinomial convolution (Newton product). Using elementary techniques, we prove that this set equipped with the termwise sum and the aforementioned products is an R-algebra, given any commutative ring R with identity. Moreover, we provide explicitly a characteristic polynomial of the Hurwitz product and Newton product of any two linear recurrent sequences. Finally, we also investigate whether these R-algebras are isomorphic, considering also the R-algebras obtained using the Hadamard product and the convolution product.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.