{"title":"Quantum Dot Phase Transition Simulation with Hybrid Quantum Annealing via Metropolis-Adjusted Stochastic Gradient Langevin Dynamics","authors":"Shiba Kodai, Ryo Sugiyama, Koichi Yamaguchi, Tomah Sogabe","doi":"10.1155/2022/9711407","DOIUrl":null,"url":null,"abstract":"We report a hybrid quantum-classical simulation approach for simulating the optical phase transition observed experimentally in the ultrahigh-density type-II InAs quantum dot array. A hybrid simulation scheme, which contains stochastic gradient Langevin dynamics (a well-known Bayesian machine learning algorithm for big data) along with adiabatic quantum annealing, is developed to reproduce the experimentally observed phase transition. By implementing the simulation scheme into a quantum circuit, we successfully verified the phase transition observed in the experiment. Our work demonstrates for the first time the feasibility of hybridizing quantum computation with classical Langevin dynamics for the analysis of carrier dynamics and quantum phase transition of the quantum dot.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":"379 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/9711407","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
We report a hybrid quantum-classical simulation approach for simulating the optical phase transition observed experimentally in the ultrahigh-density type-II InAs quantum dot array. A hybrid simulation scheme, which contains stochastic gradient Langevin dynamics (a well-known Bayesian machine learning algorithm for big data) along with adiabatic quantum annealing, is developed to reproduce the experimentally observed phase transition. By implementing the simulation scheme into a quantum circuit, we successfully verified the phase transition observed in the experiment. Our work demonstrates for the first time the feasibility of hybridizing quantum computation with classical Langevin dynamics for the analysis of carrier dynamics and quantum phase transition of the quantum dot.
期刊介绍:
Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties.
Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.